Skip to main content
Log in

Angiotensin-(1–9) prevents angiotensin II-induced endothelial apoptosis through CNPY2/PERK pathway

  • Published:
Apoptosis Aims and scope Submit manuscript

A Correction to this article was published on 20 July 2023

This article has been updated

Abstract

Endothelial apoptosis caused by activation of renin-angiotensin system (RAS) plays a vital part in the occurrence and progress of hypertension. Angiotensin-(1–9) (Ang-(1–9)) is a peptide of the counter-regulatory non-classical RAS with anti-hypertensive effects in vascular endothelial cells (ECs). However, the mechanism of action remains unclear. Considering that the endothelial apoptosis was closely related to endoplasmic reticulum stress (ERS) and mitochondrial function. Herein, we aimed to elucidate the effects of Ang-(1–9) on endothelial apoptosis and the underlying molecular mechanism in angiotensin II (Ang II) induced hypertension. In human umbilical vascular endothelial cells (HUVECs), we observed Ang-(1–9) inhibited Ang II-induced ERS associated endothelial apoptosis. Mechanically, Ang-(1–9) inhibited endothelial apoptosis by blocking CNPY2/PERK mediated CaMKII/Drp1-dependent mitochondrial fission and eIF2α/CHOP signal. Consistent with above effects in HUVECs, in Ang II-induced hypertensive mice, we found administration of exogenous Ang-(1–9) attenuated endothelial apoptosis and arterial blood pressure, which were mediated by CNPY2/PERK signaling pathway. Our study indicated Ang-(1–9) inhibited Ang II-induced hypertension through CNPY2/PERK pathway. These findings may provide new insights for prevention and treatment of hypertension in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data that support the current study findings are available from the corresponding author on reasonable request.

Change history

Abbreviations

Ang-(1–9):

Angiotensin-(1–9)

RAS:

Renin-angiotensin system

Ang II:

Angiotensin II

HUVECs:

Human umbilical vascular endothelial cells

ERS:

Endoplasmic reticulum stress

ECs:

Endothelial cells

CNPY2:

Canopy FGF signaling regulator 2

PERK:

Protein kinase R-like endoplasmic reticulum kinase

eIF2α:

Eukaryotic initiation factor 2α

ATF4:

Activating transcription factor 4

CHOP:

C/EBP-homologous protein

Drp1:

Dynamin-related protein 1

CaMKII:

Ca2+/calmodulin-dependent protein kinase II

UPR:

Unfolded protein response

ACE 2:

Angiotensin converting enzyme type 2

ATCC:

American type culture collection

DMEM:

Dulbecco’s modified eagle medium

FBS:

Fetal bovine serum

ROS:

Reactive oxygen species

SD:

Standard deviation

SBP:

Systolic blood pressure

DBP:

Diastolic blood pressure

BAX:

BCL2-Associated X

BCL-2:

B-cell lymphoma-2

eNOS:

Endothelin nitric oxide synthase

References

  1. Schwalm JD, McCready T, Lopez-Jaramillo P, Yusoff K, Attaran A, Lamelas P, Camacho PA, Majid F, Bangdiwala SI, Thabane L, Islam S, McKee M, Yusuf S (2019) A community-based comprehensive intervention to reduce cardiovascular risk in hypertension (HOPE 4): a cluster-randomised controlled trial. Lancet 394:1231–1242. https://doi.org/10.1016/S0140-6736(19)31949-X

    Article  PubMed  Google Scholar 

  2. Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G, Nishigaki I (2013) The vascular endothelium and human diseases. Int J Biol Sci 9:1057–1069. https://doi.org/10.7150/ijbs.7502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li XC, Zhang J, Zhuo JL (2017) The vasoprotective axes of the renin-angiotensin system: physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases. Pharmacol Res 125:21–38. https://doi.org/10.1016/j.phrs.2017.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S (2018) Angiotensin II signal transduction: an update on mechanisms of physiology and pathophysiology. Physiol Rev 98:1627–1738. https://doi.org/10.1152/physrev.00038.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, Donovan M, Woolf B, Robison K, Jeyaseelan R, Breitbart RE, Acton S (2000) A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res 87:E1-9. https://doi.org/10.1161/01.res.87.5.e1

    Article  CAS  PubMed  Google Scholar 

  6. Flores-Munoz M, Work LM, Douglas K, Denby L, Dominiczak AF, Graham D, Nicklin SA (2012) Angiotensin-(1–9) attenuates cardiac fibrosis in the stroke-prone spontaneously hypertensive rat via the angiotensin type 2 receptor. Hypertension 59:300–307. https://doi.org/10.1161/hypertensionaha.111.177485

    Article  CAS  PubMed  Google Scholar 

  7. Ocaranza MP, Moya J, Barrientos V, Alzamora R, Hevia D, Morales C, Pinto M, Escudero N, García L, Novoa U, Ayala P, Díaz-Araya G, Godoy I, Chiong M, Lavandero S, Jalil JE, Michea L (2014) Angiotensin-(1–9) reverses experimental hypertension and cardiovascular damage by inhibition of the angiotensin converting enzyme/Ang II axis. J Hypertens 32:771–783. https://doi.org/10.1097/hjh.0000000000000094

    Article  CAS  PubMed  Google Scholar 

  8. Gonzalez L, Novoa U, Moya J, Gabrielli L, Jalil JE, Garcia L, Chiong M, Lavandero S, Ocaranza MP (2018) Angiotensin-(1–9) reduces cardiovascular and renal inflammation in experimental renin-independent hypertension. Biochem Pharmacol 156:357–370. https://doi.org/10.1016/j.bcp.2018.08.045

    Article  CAS  PubMed  Google Scholar 

  9. Sotomayor-Flores C, Rivera-Mejias P, Vasquez-Trincado C, Lopez-Crisosto C, Morales PE, Pennanen C, Polakovicova I, Aliaga-Tobar V, Garcia L, Roa JC, Rothermel BA, Maracaja-Coutinho V, Ho-Xuan H, Meister G, Chiong M, Ocaranza MP, Corvalan AH, Parra V, Lavandero S (2020) Angiotensin-(1–9) prevents cardiomyocyte hypertrophy by controlling mitochondrial dynamics via miR-129-3p/PKIA pathway. Cell Death Differ 27:2586–2604. https://doi.org/10.1038/s41418-020-0522-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pober JS, Min W, Bradley JR (2009) Mechanisms of endothelial dysfunction, injury, and death. Annu Rev Pathol 4:71–95. https://doi.org/10.1146/annurev.pathol.4.110807.092155

    Article  CAS  PubMed  Google Scholar 

  11. Battson ML, Lee DM, Gentile CL (2017) Endoplasmic reticulum stress and the development of endothelial dysfunction. Am J Physiol Heart Circ Physiol 312:H355–H367. https://doi.org/10.1152/ajpheart.00437.2016

    Article  CAS  PubMed  Google Scholar 

  12. Barabutis N (2021) Unfolded protein response: a regulator of the endothelial barrier. Endocr Metab Sci. https://doi.org/10.1016/j.endmts.2021.100092

    Article  PubMed  PubMed Central  Google Scholar 

  13. Han S, Bal NB, Sadi G, Usanmaz SE, Tuglu MM, Uludag MO, Demirel-Yilmaz E (2019) Inhibition of endoplasmic reticulum stress protected DOCA-salt hypertension-induced vascular dysfunction. Vascul Pharmacol 113:38–46. https://doi.org/10.1016/j.vph.2018.11.004

    Article  CAS  PubMed  Google Scholar 

  14. Hong F, Liu B, Wu BX, Morreall J, Roth B, Davies C, Sun S, Diehl JA, Li Z (2017) CNPY2 is a key initiator of the PERK-CHOP pathway of the unfolded protein response. Nat Struct Mol Biol 24:834–839. https://doi.org/10.1038/nsmb.3458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Roe ND, Ren J (2013) Oxidative activation of Ca(2+)/calmodulin-activated kinase II mediates ER stress-induced cardiac dysfunction and apoptosis. Am J Physiol Heart Circ Physiol 304:H828-839. https://doi.org/10.1152/ajpheart.00752.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhong Y, Jin C, Han J, Zhu J, Liu Q, Sun D, Xia X, Peng X (2021) Inhibition of ER stress attenuates kidney injury and apoptosis induced by 3-MCPD via regulating mitochondrial fission/fusion and Ca2+ homeostasis. Cell Biol Toxicol 37:795–809. https://doi.org/10.1007/s10565-021-09589-x

    Article  CAS  PubMed  Google Scholar 

  17. Hu J, Zhang Y, Jiang X, Zhang H, Gao Z, Li Y, Fu R, Li L, Li J, Cui H, Gao N (2019) ROS-mediated activation and mitochondrial translocation of CaMKII contributes to Drp1-dependent mitochondrial fission and apoptosis in triple-negative breast cancer cells by isorhamnetin and chloroquine. J Exp Clin Cancer Res 38:225. https://doi.org/10.1186/s13046-019-1201-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wakisaka Y, Chu Y, Miller JD, Rosenberg GA, Heistad DD (2010) Spontaneous intracerebral hemorrhage during acute and chronic hypertension in mice. J Cereb Blood Flow Metab 30:56–69. https://doi.org/10.1038/jcbfm.2009.183

    Article  CAS  PubMed  Google Scholar 

  19. Norambuena-Soto I, Ocaranza MP, Cancino-Arenas N, Sanhueza-Olivares F, Villar-Fincheira P, Leiva-Navarrete S, Mancilla-Medina C, Moya J, Novoa U, Jalil JE, Castro PF, Lavandero S, Chiong M (2020) Angiotensin-(1–9) prevents vascular remodeling by decreasing vascular smooth muscle cell dedifferentiation through a FoxO1-dependent mechanism. Biochem Pharmacol 180:114190. https://doi.org/10.1016/j.bcp.2020.114190

    Article  CAS  PubMed  Google Scholar 

  20. Huang L, Wang A, Hao Y, Li W, Liu C, Yang Z, Zheng F, Zhou MS (2018) Macrophage depletion lowered blood pressure and attenuated hypertensive renal injury and fibrosis. Front Physiol 9:473. https://doi.org/10.3389/fphys.2018.00473

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liang CC, Park AY, Guan JL (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2:329–333. https://doi.org/10.1038/nprot.2007.30

    Article  CAS  PubMed  Google Scholar 

  22. Cui M, Cai Z, Chu S, Sun Z, Wang X, Hu L, Yi J, Shen L, He B (2016) Orphan nuclear receptor nur77 inhibits angiotensin II-induced vascular remodeling via downregulation of beta-catenin. Hypertension 67:153–162. https://doi.org/10.1161/HYPERTENSIONAHA.115.06114

    Article  CAS  PubMed  Google Scholar 

  23. Sepúlveda-Fragoso V, Alexandre-Santos B, Salles ACP, Proença AB, de Paula Alves AP, Vázquez-Carrera M, Nóbrega ACL, Frantz EDC, Magliano DC (2021) Crosstalk between the renin-angiotensin system and the endoplasmic reticulum stress in the cardiovascular system: lessons learned so far. Life Sci 284:119919. https://doi.org/10.1016/j.lfs.2021.119919

    Article  CAS  PubMed  Google Scholar 

  24. Takemoto-Kimura S, Suzuki K, Horigane SI, Kamijo S, Inoue M, Sakamoto M, Fujii H, Bito H (2017) Calmodulin kinases: essential regulators in health and disease. J Neurochem 141:808–818. https://doi.org/10.1111/jnc.14020

    Article  CAS  PubMed  Google Scholar 

  25. Jin L, Piao ZH, Liu CP, Sun S, Liu B, Kim GR, Choi SY, Ryu Y, Kee HJ, Jeong MH (2018) Gallic acid attenuates calcium calmodulin-dependent kinase II-induced apoptosis in spontaneously hypertensive rats. J Cell Mol Med 22:1517–1526. https://doi.org/10.1111/jcmm.13419

    Article  CAS  PubMed  Google Scholar 

  26. Gkaliagkousi E, Gavriilaki E, Triantafyllou A, Douma S (2015) Clinical significance of endothelial dysfunction in essential hypertension. Curr Hypertens Rep 17:85. https://doi.org/10.1007/s11906-015-0596-3

    Article  CAS  PubMed  Google Scholar 

  27. Wang Q, Zhang M, Ding Y, Wang Q, Zhang W, Song P, Zou MH (2014) Activation of NAD(P)H oxidase by tryptophan-derived 3-hydroxykynurenine accelerates endothelial apoptosis and dysfunction in vivo. Circ Res 114:480–492. https://doi.org/10.1161/circresaha.114.302113

    Article  CAS  PubMed  Google Scholar 

  28. Schröder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789. https://doi.org/10.1146/annurev.biochem.73.011303.074134

    Article  CAS  PubMed  Google Scholar 

  29. Karagöz GE, Aragón T, Acosta-Alvear D (2019) Recent advances in signal integration mechanisms in the unfolded protein response. Research. https://doi.org/10.12688/f1000research.19848.1

    Article  Google Scholar 

  30. Jiang S, Shui Y, Cui Y, Tang C, Wang X, Qiu X, Hu W, Fei L, Li Y, Zhang S, Zhao L, Xu N, Dong F, Ren X, Liu R, Persson PB, Patzak A, Lai EY, Wei Q, Zheng Z (2021) Gut microbiota dependent trimethylamine N-oxide aggravates angiotensin II-induced hypertension. Redox Biol 46:102115. https://doi.org/10.1016/j.redox.2021.102115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Timmins JM, Ozcan L, Seimon TA, Li G, Malagelada C, Backs J, Backs T, Bassel-Duby R, Olson EN, Anderson ME, Tabas I (2009) Calcium/calmodulin-dependent protein kinase II links ER stress with fas and mitochondrial apoptosis pathways. J Clin Invest 119:2925–2941. https://doi.org/10.1172/jci38857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhao S, Yuan C, Tuo X, Zhou C, Zhao Q, Shen T (2021) MCLR induces dysregulation of calcium homeostasis and endoplasmic reticulum stress resulting in apoptosis in Sertoli cells. Chemosphere 263:127868. https://doi.org/10.1016/j.chemosphere.2020.127868

    Article  CAS  PubMed  Google Scholar 

  33. Sun L, Liu YL, Ye F, Xie JW, Zeng JW, Qin L, Xue J, Wang YT, Guo KM, Ma MM, Tang YB, Li XY, Gao M (2019) Free fatty acid-induced HO activates TRPM2 to aggravate endothelial insulin resistance via Ca-dependent PERK/ATF4/TRB3 cascade in obese mice. Free Radic Biol Med 143:288–299. https://doi.org/10.1016/j.freeradbiomed.2019.08.018

    Article  CAS  PubMed  Google Scholar 

  34. Uchikado Y, Ikeda Y, Ohishi M (2022) Current understanding of the pivotal role of mitochondrial dynamics in cardiovascular diseases and senescence. Front Cardiovasc Med 9:905072. https://doi.org/10.3389/fcvm.2022.905072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jin JY, Wei XX, Zhi XL, Wang XH, Meng D (2021) Drp1-dependent mitochondrial fission in cardiovascular disease. Acta Pharmacol Sin 42:655–664. https://doi.org/10.1038/s41401-020-00518-y

    Article  CAS  PubMed  Google Scholar 

  36. Deng Y, Li S, Chen Z, Wang W, Geng B, Cai J (2021) Mdivi-1, a mitochondrial fission inhibitor, reduces angiotensin-II- induced hypertension by mediating VSMC phenotypic switch. Biomed Pharmacother 140:111689. https://doi.org/10.1016/j.biopha.2021.111689

    Article  CAS  PubMed  Google Scholar 

  37. Hayashida R, Kondo K, Morita S, Unno K, Shintani S, Shimizu Y, Calvert JW, Shibata R, Murohara T (2017) Diallyl trisulfide augments ischemia-induced angiogenesis via an endothelial nitric oxide synthase-dependent mechanism. Circ J 81:870–878. https://doi.org/10.1253/circj.CJ-16-1097

    Article  CAS  PubMed  Google Scholar 

  38. Pan J, Zhang L, Xu S, Cheng X, Yu H, Bao J, Lu R (2018) Induction of apoptosis in human papillary-thyroid-carcinoma BCPAP cells by diallyl trisulfide through activation of the MAPK signaling pathway. J Agric Food Chem 66:5871–5878. https://doi.org/10.1021/acs.jafc.8b02243

    Article  CAS  PubMed  Google Scholar 

  39. Lebeau J, Saunders JM, Moraes VWR, Madhavan A, Madrazo N, Anthony MC, Wiseman RL (2018) The PERK arm of the unfolded protein response regulates mitochondrial morphology during acute endoplasmic reticulum stress. Cell Rep 22:2827–2836. https://doi.org/10.1016/j.celrep.2018.02.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Almeida LM, Pinho BR, Duchen MR, Oliveira JMA (2022) The PERKs of mitochondria protection during stress: insights for PERK modulation in neurodegenerative and metabolic diseases. Biol Rev Camb Philos Soc Undefined. https://doi.org/10.1111/brv.12860

    Article  Google Scholar 

  41. Hatta K, Guo J, Ludke A, Dhingra S, Singh K, Huang ML, Weisel RD, Li RK (2014) Expression of CNPY2 in mouse tissues: quantification and localization. PLoS ONE 9:e111370. https://doi.org/10.1371/journal.pone.0111370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Guo J, Zhang Y, Mihic A, Li S, Sun Z, Shao Z, Wu J, Weisel RD, Li RK (2015) A secreted protein (Canopy 2, CNPY2) enhances angiogenesis and promotes smooth muscle cell migration and proliferation. Cardiovasc Res 105:383–393. https://doi.org/10.1093/cvr/cvv010

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Chinese Natural Science Foundation grants (81800171, 81900275), the Natural Science Foundation of Shanxi Province (201801D221273), the Scientific and Technological Innovation Program of Shanxi Higher Education Institution (201804026, 201804027) and Shanxi Provincial Commission of Health and Family Planning (2017053).

Author information

Authors and Affiliations

Authors

Contributions

CLG participated in the conception and design of the work, obtained and analysed data and wrote the manuscript. HML performed the experiments and materials, and wrote the manuscript. BL designed the experiments, and wrote the manuscript. ZYL supervised the work, performed the experiments, analysed data, and wrote the manuscript.

Corresponding authors

Correspondence to Hui-min Liu, Bao Li or Zhao-yang Lu.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 766 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Cl., Liu, Hm., Li, B. et al. Angiotensin-(1–9) prevents angiotensin II-induced endothelial apoptosis through CNPY2/PERK pathway. Apoptosis 28, 379–396 (2023). https://doi.org/10.1007/s10495-022-01793-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-022-01793-2

Keywords

Navigation