Skip to main content

Advertisement

Log in

Synergistic antitumor activity of triple-regulated oncolytic adenovirus with VSTM1 and daunorubicin in leukemic cells

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

V-set and transmembrane domain-containing 1 (VSTM1), which is downregulated in bone marrow cells from leukemia patients, may provide a diagnostic and treatment target. Here, a triple-regulated oncolytic adenovirus was constructed to carry a VSTM1 gene expression cassette, SG611-VSTM1, and contained the E1a gene with a 24-nucleotide deletion within the CR2 region under control of the human telomerase reverse transcriptase promoter, E1b gene directed by the hypoxia response element, and VSTM1 gene controlled by the cytomegalovirus promoter. Real-time quantitative PCR and Western blot analyses showed that SG611-VSTM1 expressed VSTM1 highly efficiently in the human leukemic cell line K562 compared with SG611. In Cell Counting Kit-8 and flow cytometric assays, SG611-VSTM1 exhibited more potent anti-proliferative and pro-apoptotic effects in leukemic cells compared with SG611 and exerted synergistic cytotoxicity with low-dose daunorubicin (DNR) in vitro. In xenograft models, SG611-VSTM1 intratumorally injected at a dose of 1 × 109 plaque forming units combined with intraperitoneally injected low-dose DNR displayed significantly stronger antitumor effects than either treatment alone. Histopathologic examination revealed that SG611-VSTM1 induced apoptosis of leukemic cells. These results implicate an important role for VSTM1 in the pathogenesis of leukemia, and SG611-VSTM1 may be a promising agent for enhancing chemosensitivity in leukemia therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hemminki O, Parviainen S, Juhila J, Turkki R, Linder N, Lundin J et al (2015) Immunological data from cancer patients treated with Ad5/3-E2F-Δ24-GMCSF suggests utility for tumor immunotherapy. Oncotarget 6:4467–4481

    Article  PubMed  PubMed Central  Google Scholar 

  2. Liljenfeldt L, Yu D, Chen L, Essand M, Mangsbo SM (2014) A hexon and fiber-modified adenovirus expressing CD40L improves the antigen presentation capacity of dendritic cells. J Immunother 37:155–162

    Article  CAS  PubMed  Google Scholar 

  3. Castro JE, Melo-Cardenas J, Urquiza M, Barajas-Gamboa JS, Pakbaz RS, Kipps TJ (2012) Gene immunotherapy of chronic lymphocytic leukemia: a phase I study of intranodally injected adenovirus expressing a chimeric CD154 molecule. Cancer Res 72:2937–2948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ma G, Kawamura K, Shan Y, Okamoto S, Li Q, Namba M et al (2014) Combination of adenoviruses expressing melanoma differentiation-associated gene-7 and chemotherapeutic agents produces enhanced cytotoxicity on esophageal carcinoma. Cancer Gene Ther 21:31–37

    Article  PubMed  Google Scholar 

  5. Li T, Guo X, Wang W, Mo X, Wang P, Han W (2015) V-set and transmembrane domain-containing 1 is silenced in human hematopoietic malignancy cell lines with promoter methylation and has inhibitory effects on cell growth. Mol Med Rep 11:1344–1351

    CAS  PubMed  Google Scholar 

  6. Li T, Wang W, Chen Y, Han W (2013) Preparation and characterization of monoclonal antibodies against VSTM1. Monoclon Antib Immunodiagn Immunother 32:283–289

    Article  PubMed  PubMed Central  Google Scholar 

  7. Steevels TA, Lebbink RJ, Westerlaken GH, Coffer PJ, Meyaard L (2010) Signal inhibitory receptor on leukocytes-1 is a novel functional inhibitory immune receptor expressed on human phagocytes. J Immunol 184:4741–4748

    Article  CAS  PubMed  Google Scholar 

  8. Guo X, Zhang Y, Wang P, Li T, Fu W, Mo X et al (2012) VSTM1-v2, a novel soluble glycoprotein, promotes the differentiation and activation of Th17 cells. Cell Immunol 278:136–142

    Article  CAS  PubMed  Google Scholar 

  9. Xie M, Li T, Li N, Li J, Yao Q, Han W et al (2015) VSTM-v1 is a potential myeloid differentiation antigen gene that is downregulated in bone marrow cells from patients with myeloid leukemia. J Hematol Oncol 8:25

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jiang G, Xin Y, Zheng JN, Liu YQ (2011) Combining conditionally replicating adenovirus-mediated gene therapy with chemotherapy: a novel antitumor approach. Int J Cancer 129:263–274

    Article  CAS  PubMed  Google Scholar 

  11. Chu RL, Post DE, Khuri FR, Van Meir EG (2004) Use of replicating oncolytic adenoviruses in combination therapy for cancer. Clin Cancer Res 10:5299–5312

    Article  CAS  PubMed  Google Scholar 

  12. Bressy C, Benihoud K (2014) Association of oncolytic adenoviruses with chemotherapies: an overview and future directions. Biochem Pharmacol 90:97–106

    Article  CAS  PubMed  Google Scholar 

  13. Shay JW, Wright WE (2001) Telomeres and telomerase: implications for cancer and aging. Radiat Res 155:188–193

    Article  CAS  PubMed  Google Scholar 

  14. Hewitson KS, Schofield CJ (2004) The HIF pathway as a therapeutic target. Drug Discov Today 9:704–711

    Article  CAS  PubMed  Google Scholar 

  15. Su CQ, Sham J, Xue HB, Wang XH, Chua D, Cui ZF et al (2004) Potent antitumoral efficacy of a novel replicative adenovirus CNHK300 targeting telomerase-positive cancer cells. J Cancer Res Clin Oncol 130:591–603

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Q, Chen G, Peng L, Wang X, Yang Y, Liu C et al (2006) Increased safety with preserved antitumoral efficacy on hepatocellular carcinoma with dual-regulated oncolytic adenovirus. Clin Cancer Res 12:6523–6531

    Article  CAS  PubMed  Google Scholar 

  17. Wang X, Su C, Cao H, Li K, Chen J, Jiang L et al (2008) A novel triple-regulated oncolytic adenovirus carrying p53 gene exerts potent antitumor efficacy on common human solid cancers. Mol Cancer Ther 7:1598–1603

    Article  CAS  PubMed  Google Scholar 

  18. Xie M, Niu JH, Chang Y, Qian QJ, Wu HP, Li LF et al (2009) A novel triple-regulated oncolytic adenovirus carrying PDCD5 gene exerts potent antitumor efficacy on common human leukemic cell lines. Apoptosis 14:1086–1094

    Article  CAS  PubMed  Google Scholar 

  19. Ruan GR, Zhao HS, Chang Y, Li JL, Qin YZ, Liu YR et al (2008) Adenovirus-mediated PDCD5 gene transfer sensitizes K562 cells to apoptosis induced by idarubicin in vitro and in vivo. Apoptosis 13:641–648

    Article  CAS  PubMed  Google Scholar 

  20. Ruan GR, Chen SS, Chang Y, Li JL, Qin YZ, Li LD et al (2007) Adenovirus-mediated PDCD5 gene transfer sensitizes apoptosis of K562 cells induced by etoposide. Zhongguo Shi Yan Xue Ye Xue Za Zhi 15:936–940

    CAS  PubMed  Google Scholar 

  21. Davis H, Davis T (1979) Daunorubicin and adriamycin in cancer treatment: an analysis of their roles and limitations. Cancer Treat Rep 63:809–815

    CAS  PubMed  Google Scholar 

  22. Young R, Ozols R, Myers C (1981) The anthracycline antineoplastic drugs. N Engl J Med 305:139–153

    Article  CAS  PubMed  Google Scholar 

  23. Shan K, Lincoff M, Young J (1996) Anthracycline-induced cardiotoxicity. Ann Intern Med 125:47–58

    Article  CAS  PubMed  Google Scholar 

  24. LaBarre DD, Lowy RJ (2001) Improvements in methods for calculating virus titer estimates from TCID50 and plaque assays. J Virol Methods 96:107–126

    Article  CAS  PubMed  Google Scholar 

  25. Ruan GR, Qin YZ, Chen SS, Li JL, Ma X, Chang Y (2006) Abnormal expression of the programmed cell death 5 gene in acute and chronic myeloid leukemia. Leuk Res 30:1159–1165

    Article  CAS  PubMed  Google Scholar 

  26. Euhus DM, Hudd C, LaRegina MC, Johnson FE (1986) Tumor measurement in the nude mouse. J Surg Oncol 31:229–234

    Article  CAS  PubMed  Google Scholar 

  27. Steevels TA, van Avondt K, Westerlaken GH, Stalpers F, Walk J, Bont L et al (2013) Signal inhibitory receptor on leukocytes-1 (SIRL-1) negatively regulates the oxidative burst in human phagocytes. Eur J Immunol 43:1297–1308

    Article  CAS  PubMed  Google Scholar 

  28. Van Avondt K, Fritsch-Stork R, Derksen RH, Meyaard L (2013) Ligation of signal inhibitory receptor on leukocytes-1 suppresses the release of neutrophil extracellular traps in systemic lupus erythematosus. PLoS One 8:e78459

    Article  PubMed  PubMed Central  Google Scholar 

  29. Liu H, Zou X, Li T, Wang X, Yuan W, Chen Y et al (2016) Enhanced production of secretory glycoprotein VSTM1-v2 with mouse IgGκ signal peptide in optimized HEK293F transient transfection. J Biosci Bioeng 121:133–139

    Article  CAS  PubMed  Google Scholar 

  30. Mu H, Wang N, Zhao L, Li S, Li Q, Chen L et al (2015) Methylation of PLCD1 and adenovirus-mediated PLCD1 overexpression elicits a gene therapy effect on human breast cancer. Exp Cell Res 332:179–189

    Article  CAS  PubMed  Google Scholar 

  31. Yang Y, Xu H, Huang W, Ding M, Xiao J, Yang D et al (2015) Targeting lung cancer stem-like cells with TRAIL gene armed oncolytic adenovirus. J Cell Mol Med 19:915–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yamamoto M, Curiel DT (2010) Current issues and future directions of oncolytic adenoviruses. Mol Ther 18:243–250

    Article  CAS  PubMed  Google Scholar 

  33. Chen GX, Zhang S, He XH, Liu SY, Ma C, Zou XP (2014) Clinical utility of recombinant adenoviral human p53 gene therapy: current perspectives. Onco Targets Ther 7:1901–1909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tazawa H, Kagawa S, Fujiwara T (2013) Advances in adenovirus-mediated p53 cancer gene therapy. Expert Opin Biol Ther 13:1569–1583

    Article  CAS  PubMed  Google Scholar 

  35. Short JJ, Curiel DT (2009) Oncolytic adenoviruses targeted to cancer stem cells. Mol Cancer Ther 8:2096–2102

    Article  CAS  PubMed  Google Scholar 

  36. Pan QW, Zhong SY, Liu BS, Liu J, Cai R, Wang YG et al (2007) Enhanced sensitivity of hepatocellular carcinoma cells to chemotherapy with a Smac-armed oncolytic adenovirus. Acta Pharmacol Sin 28:1996–2004

    Article  CAS  PubMed  Google Scholar 

  37. Wu YM, Zhang KJ, Yue XT, Wang YQ, Yang Y, Li GC et al (2009) Enhancement of tumor cell death by combining cisplatin with an oncolytic adenovirus carrying MDA-7/IL-24. Acta Pharmacol Sin 30:467–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ma B, Wang Y, Zhou X, Huang P, Zhang R, Liu T et al (2015) Synergistic suppression effect on tumor growth of hepatocellular carcinoma by combining oncolytic adenovirus carrying XAF1 with cisplatin. J Cancer Res Clin Oncol 141:419–429

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Basic Research Program of China (Grant 2013CB733701), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant 20130001110079), the National Natural Science Foundation of China (Grant 81570182), and the Key Program of National Natural Science Foundation of China (Grant 81530046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Rui Ruan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Yao, QM., Li, JL. et al. Synergistic antitumor activity of triple-regulated oncolytic adenovirus with VSTM1 and daunorubicin in leukemic cells. Apoptosis 21, 1179–1190 (2016). https://doi.org/10.1007/s10495-016-1276-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-016-1276-8

Keywords

Navigation