Skip to main content

Advertisement

Log in

PAR-1 mediated apoptosis of breast cancer cells by V. cholerae hemagglutinin protease

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Bacterial toxins have emerged as promising agents in cancer treatment strategy. Hemagglutinin (HAP) protease secreted by Vibrio cholerae induced apoptosis in breast cancer cells and regresses tumor growth in mice model. The success of novel cancer therapies depends on their selectivity for cancer cells with limited toxicity for normal tissues. Increased expression of Protease Activated Receptor-1 (PAR-1) has been reported in different malignant cells. In this study we report that HAP induced activation and over expression of PAR-1 in breast cancer cells (EAC). Immunoprecipitation studies have shown that HAP specifically binds with PAR-1. HAP mediated activation of PAR-1 caused nuclear translocation of p50–p65 and the phosphorylation of p38 which triggered the activation of NFκB and MAP kinase signaling pathways. These signaling pathways enhanced the cellular ROS level in malignant cells that induced the intrinsic pathway of cell apoptosis. PAR-1 mediated apoptosis by HAP of malignant breast cells without effecting normal healthy cells in the same environment makes it a good therapeutic agent for treatment of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Urruticoechea A, Alemany R, Balart J, Villanueva A, Viñals F, Capellá G (2010) Recent advances in cancer therapy: an overview. Curr Pharm Des 16(1):3–10

    Article  CAS  PubMed  Google Scholar 

  2. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sellers WR, Fisher DE (1999) Apoptosis and cancer drug targeting. J Clin Invest 104(12):1655–1661. doi:10.1172/JCI9053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ray T, Chakrabarti MK, Pal A (2015) Hemagglutinin protease secreted by V. cholerae induced apoptosis in breast cancer cells by ROS mediated intrinsic pathway and regresses tumor growth in mice model. Apoptosis. doi:10.1007/s10495-015-1194-11-12

    Google Scholar 

  5. Turk B (2006) Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 5:785–799

    Article  CAS  PubMed  Google Scholar 

  6. DeClerck YA, Mercurio AM, Stack MS, Chapman HA, Zutter MM, Muschel RJ et al (2004) Proteases, extracellular matrix, and cancer. Am J Pathol 164(4):1131–1139. doi:10.1016/S0002-9440(10)63200-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Maeda H, Matsumura Y, Molla A (1987) Antitumor activity of some bacterial proteases: eradication of solid tumors in mice by intratumor injection. Can Res 47:563–566

    CAS  Google Scholar 

  8. Han N, Jin K, He K, Cao J, Teng L (2011) Protease-activated receptors in cancer: a systematic review. Oncol Lett 2:599–608. doi:10.3892/ol.2011.291

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Soh UJ, Dores MR, Chen B, Trejo J (2010) Signal transduction by protease-activated receptors. Br J Pharmacol 160(2):191–203. doi:10.1111/j.1476-5381.2010.00705.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Flynn AN, Buret AG (2004) Proteinase-activated receptor 1 (PAR-1) and cell apoptosis. Apoptosis 6:729–737

    Article  Google Scholar 

  11. Turk B, Turk D, Turk V (2012) Protease signalling: the cutting edge. EMBO J 31(7):1630–1643. doi:10.1038/emboj.2012.42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Even-Ram S, Uziely B, Cohen P et al (1998) Thrombin receptor overexpression in malignant and physiological invasion processes. Nat Med 4:909–914

    Article  CAS  PubMed  Google Scholar 

  13. Taggart CC, Greene CM, Smith SG, Levine RL, McCray PB Jr, O’Neill S et al (2003) Inactivation of human beta-defensins 2 and 3 by elastolytic cathepsins. J Immunol 171:931–937

    Article  CAS  PubMed  Google Scholar 

  14. Moncada D, Keller K, Chadee K (2003) Entamoeba histolytica cysteine proteinases disrupt the polymeric structure of colonic mucin and alter its protective function. Infect Immun 71(2):838–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Denecker G, Declercq W, Geuijen CA, Boland A, Benabdillah R, Gurp MV et al (2001) Yersinia enterocolitica YopP-induced apoptosis of macrophages involves the apoptotic signaling cascade upstream of bid. J Biol Chem 276:19706–19714

    Article  CAS  PubMed  Google Scholar 

  16. Nomura F, Akashi S, Sakao Y, Sato S, Kawai T, Matsumoto M et al (2000) Cutting edge: endotoxin tolerance in mouse peritoneal macrophages correlates with down-regulation of surface toll-like receptor 4 expression. J Immunol 164:3476–3479. doi:10.4049/jimmunol.164.7.3476

    Article  CAS  PubMed  Google Scholar 

  17. Chattopadhyay S, Das T, Sa G, Ray PK (2002) Protein A-activated macrophages induce apoptosis in Ehrlich’s ascites carcinoma through a nitric oxide-dependent pathway. Apoptosis 7:49–57

    Article  CAS  PubMed  Google Scholar 

  18. Bhattacharyya A, Choudhuri T, Pal S, Chattopadhyay S, Datta GK, Sa G et al (2003) Apoptogenic effects of black tea on Ehrlich’s ascites carcinoma cell. Carcinogenesis 24(1):75–80. doi:10.1093/carcin/24.1.75

    Article  CAS  PubMed  Google Scholar 

  19. Pal S, Choudhuri T, Chattopadhyay S, Bhattacharya A, Datta GK, Das T et al (2001) Mechanisms of curcumin-induced apoptosis of Ehrlich’s Ascites Carcinoma cells. Biochem Biophys Res Commun 288:658–665. doi:10.1006/bbrc.2001.5823

    Article  CAS  PubMed  Google Scholar 

  20. Das T, Sa G, Chattopadhyay S, Ray PK (2002) Protein A-induced apoptosis of cancer cells is affected by soluble immune mediators. Cancer Immunol Immunother 51:376–380. doi:10.1007/s00262-002-0288-0

    Article  CAS  PubMed  Google Scholar 

  21. Gannon JV, Lane DP (1987) p63 and DNA polymerase a compete for the binding to SV40 T antigen. Nature 329:456–458

    Article  CAS  PubMed  Google Scholar 

  22. Rosner M, Hengstschlager M (2008) Cytoplasmic and nuclear distribution of the protein complexes mTORC1 and mTORC2: rapamycin triggers dephosphorylation and delocalization of the mTORC2 components rictor and sin1. Hum Mol Genet 17(19):2934–2948

    Article  CAS  PubMed  Google Scholar 

  23. Kageyama T, Kojima S, Shinohara M, Uchida K, Fukushi S, Hoshino FB, Takeda N, Katayama K (2003) Broadly reactive and highly sensitive assay for Norwalk-like viruses based on real-time quantitative reverse transcription-PCR. J Clin Microbiol 41(4):1548–1557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kumagai H, Mukaisho K, Sugihara H, Miwa K, Yamamoto G, Hattori T (2004) Thioproline inhibits development of esophageal adenocarcinoma induced by gastroduodenal reflux in rats. Carcinogenesis 25:723–727. doi:10.1093/carcin/bgh067

    Article  CAS  PubMed  Google Scholar 

  25. Ribble D, Goldstein NB, Norris DA, Shellman YG (2005) A simple technique for quantifying apoptosis in 96-well plates. BMC Biotechnol 10:5–12. doi:10.1186/1472-6750-5-12

    Google Scholar 

  26. Ray T, Maity PC, Banerjee S, Deb S, Dasgupta AK, Sarkar S et al (2010) Vitamin C prevents cigarette smoke induced atherosclerosis in guinea pig model. J Atheroscler Thromb 17(8):817–827. doi:10.5551/jat.2881

    Article  CAS  PubMed  Google Scholar 

  27. Majumder B, Baraneedharan U, Thiyagarajan S, Radhakrishnan P, Narashisimhan H, Dhandapani M et al (2015) Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity. Nat Commun 6:6169. doi:10.1038/ncomms7169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Matsen CB, Neumayer LA (2013) Breast cancer: a review for the general surgeon. JAMA Surg 148(10):971–979. doi:10.1001/jamasurg.2013.3393

    Article  PubMed  Google Scholar 

  29. Greenberg PA, Hortobagyi GN, Smith TL, Ziegler LD, Frye DK, Buzdar AU (1996) Long-term follow-up of patients with complete remission following combination chemotherapy for metastatic breast cancer. J Clin Oncol 14:2197–2205

    CAS  PubMed  Google Scholar 

  30. Orlando L, Colleoni M, Fedele P, Cusmai A, Rizzo P, D’Amico M et al (2007) Management of advanced breast cancer. Ann Oncol 18(Suppl 6):vi74–vi76. doi:10.1093/annonc/mdm230

  31. Ihemelandu CU, Leffall LD Jr, Dewitty RL, Naab TJ, Mezghebe HM, Makambi KH et al (2007) Molecular breast cancer subtypes in premenopausal and postmenopausal African-American women: age-specific prevalence and survival. J Surg Res 143:109–118. doi:10.1016/j.jss.2007.03.085

    Article  CAS  PubMed  Google Scholar 

  32. Dalerba P, Cho RW, Clarke MF (2007) Cancer stem cells: models and concepts. Annu Rev Med 58:267–284. doi:10.1146/annurev.med.58.062105.204854

    Article  CAS  PubMed  Google Scholar 

  33. Granovsky-Grisaru S, Zaidoun S, Grisaru D, Yekel Y, Prus D, Beller U et al (2006) The pattern of protease activated receptor 1 (PAR1) expression in endometrial carcinoma. Gynecol Oncol 103:802–806. doi:10.1016/j.ygyno.2006.05.048

    Article  CAS  PubMed  Google Scholar 

  34. Grisaru-Granovsky S, Salah Z, Maoz M, Pruss D, Beller U, Bar-Shavit R (2005) Differential expression of protease activated receptor 1 (Par1) and pY397FAK in benign and malignant human ovarian tissue samples. Int J Cancer 113:372–378. doi:10.1002/ijc.20607

    Article  CAS  PubMed  Google Scholar 

  35. Agarwal A, Covic L, Sevigny LM, Kaneider NC, Lazarides K, Azabdaftari G et al (2008) Targeting a metalloprotease-PAR1 signaling system with cell-penetrating pepducins inhibits angiogenesis, ascites, and progression of ovarian cancer. Mol Cancer Ther 7:2746–2757. doi:10.1158/1535-7163.MCT-08-0177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Boire A, Covic L, Agarwal A, Jacques S, Sherifi S, Kuliopulos A (2005) PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell 120:303–313. doi:10.1016/j.cell.2004.12.018

    Article  CAS  PubMed  Google Scholar 

  37. Kuliopulos A, Covic L, Seeley SK, Sheridan PJ, Helin J, Costello CE (1999) Plasmin desensitization of the PAR1 thrombin receptor: kinetics, sites of truncation, and implications for thrombolytic therapy. Biochemistry 38:4572–4585. doi:10.1021/bi9824792

    Article  CAS  PubMed  Google Scholar 

  38. Ossovskaya VS, Bunnett NW (2004) Protease-activated receptors: contribution to physiology and disease. Physiol Rev 84:579–621. doi:10.1152/physrev.00028.2003

    Article  CAS  PubMed  Google Scholar 

  39. Dockendorff C, Aisiku O, VerPlank L, Dilks JR, Smith DA, Gunnink SF et al (2012) Discovery of 1,3-diaminobenzenes as selective inhibitors of platelet activation at the PAR1 receptor. ACS Med Chem Lett 3:232–237. doi:10.1021/ml2002696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Coughlin SR (1999) How the protease thrombin talks to cells. Proc Natl Acad Sci USA 96:11023–11027. doi:10.1073/pnas.96.20.11023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chalmers CJ, Balmanno K, Hadfield K, Ley R, Cook SJ (2003) Thrombin inhibits Bim (Bcl-2-interacting mediator of cell death) expression and prevents serum-withdrawal-induced apoptosis via protease-activated receptor 1. Biochem J 375:99–109. doi:10.1042/bj20030346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lidington EA, Haskard DO, Mason JC (2000) Induction of decay accelerating factor by thrombin through a protease-activated receptor 1 and protein kinase C-dependent pathway protects vascular endothelial cells from complement-mediated injury. Blood 96:2784–2792

    CAS  PubMed  Google Scholar 

  43. Mitsui H, Maruyama T, Kimura S, Takuwa Y (1998) Thrombin activates two stress-activated protein kinases, c-Jun N-terminal kinase and p38, in HepG2 cells. Hepatology 27:1362–1367. doi:10.1002/hep.510270524

    Article  CAS  PubMed  Google Scholar 

  44. Marin V, Farnarier C, Gres S, Kaplanski S, Su MS, Dinarello CA, Kaplanski G (2001) The p38 mitogen activated protein kinase pathway plays a critical role in thrombin-induced endothelial chemokine production and leukocyte recruitment. Blood 98:667–673. doi:10.1182/blood-2002-11-3338

    Article  CAS  PubMed  Google Scholar 

  45. Ming XF, Barandier C, Viswambharan H, Kwak BR, Mach F, Mazzolai L, Hayoz D, Ruffieux J, Rusconi S, Montani JP, Yang Z (2004) Thrombin stimulates human endothelial arginase enzymatic activity via RhoA/ROCK pathway: implications for atherosclerotic endothelial dysfunction. Circulation 110:3708–3714. doi:10.1161/01.CIR.0000142867.26182.32

    Article  CAS  PubMed  Google Scholar 

  46. Rahman A, True AL, Anwar KN, Ye RD, Voyno-Yasenetskaya TA, Malik AB (2002) Galpha(q) and Gbetagamma regulate PAR-1 signaling of thrombin-induced NF-kappaB activation and ICAM-1 transcription in endothelial cells. Circ Res 91:398–405. doi:10.1161/01.RES.0000033520.95242.A2

    Article  CAS  PubMed  Google Scholar 

  47. Duan WJ, Li QS, Xia MY, Tashiro S, Onodera S, Ikejima T (2011) Silibinin activated ROS-p38-NF-κB positive feedback and induced autophagic death in human fibrosarcoma HT1080 cells. J Asian Nat Prod Res 13(1):27–35. doi:10.1080/10286020.2010.540757

    Article  CAS  PubMed  Google Scholar 

  48. Lourbakos A, Chinni C, Thompson P, Potempa J, Travis J, Mackie EJ et al (1998) Cleavage and activation of proteinase-activated receptor-2 on human neutrophils by gingipain-R from Porphyromonas gingivalis. FEBS Lett 435:45–48. doi:10.1016/S0014-5793(98)01036-9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Rathin Baral (CNCI, India) for providing EAC cells and Dr. Ratna Biswas for her technical suggestion. We are grateful to the central facility of FACS and the technical support of Mr. Somnath Chatterjee for confocal microscopy at Central Facility, NICED, Kolkata. TR is supported by the Post Doctoral Fellowship of Indian Council of Medical Research (ICMR PDF fellowship).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Pal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, T., Pal, A. PAR-1 mediated apoptosis of breast cancer cells by V. cholerae hemagglutinin protease. Apoptosis 21, 609–620 (2016). https://doi.org/10.1007/s10495-016-1229-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-016-1229-2

Keywords

Navigation