Skip to main content
Log in

Carbon ion beam triggers both caspase-dependent and caspase-independent pathway of apoptosis in HeLa and status of PARP-1 controls intensity of apoptosis

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

High linear energy transfer (LET) carbon ion beam (CIB) is becoming very promising tool for various cancer treatments and is more efficient than conventional low LET gamma or X-rays to kill malignant or radio-resistant cells, although detailed mechanism of cell death is still unknown. Poly (ADP-ribose) polymerase-1 (PARP-1) is a key player in DNA repair and its inhibitors are well-known as radio-sensitizer for low LET radiation. The objective of our study was to find mechanism(s) of induction of apoptosis by CIB and role of PARP-1 in CIB-induced apoptosis. We observed overall higher apoptosis in PARP-1 knocked down HeLa cells (HsiI) compared with negative control H-vector cells after irradiation with CIB (0–4 Gy). CIB activated both intrinsic and extrinsic pathways of apoptosis via caspase-9 and caspase-8 activation respectively, followed by caspase-3 activation, apoptotic body, nucleosomal ladder formation and sub-G1 accumulation. Apoptosis inducing factor translocation into nucleus in H-vector but not in HsiI cells after CIB irradiation contributed caspase-independent apoptosis. Higher p53 expression was observed in HsiI cells compared with H-vector after exposure with CIB. Notably, we observed about 37 % fall of mitochondrial membrane potential, activation of caspase-9 and caspase-3 and mild activation of caspase-8 without any detectable apoptotic body formation in un-irradiated HsiI cells. We conclude that reduction of PARP-1 expression activates apoptotic signals via intrinsic and extrinsic pathways in un-irradiated cells. CIB irradiation further intensified both intrinsic and extrinsic pathways of apoptosis synergistically along with up-regulation of p53 in HsiI cells resulting overall higher apoptosis in HsiI than H-vector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AIF:

Apoptosis inducing factor

CIB:

Carbon ion beam 19

DAPI:

4′, 6-Diamidino-2-phenylindole

DCFH/DA:

2′,7′-Dichlorofluorescin diacetate

FACS:

Fluorescence activated cell sorter

FITC:

Fluorescein isothiocyanate

IF:

Immunofluorescence

LET:

Linear energy transfer

MMP:

Mitochondrial membrane potential

PARP-1:

Poly (ADP-ribose) polymerase-1

PI:

Propidium iodide

Rhd:

Rhodamine

SD:

Standard deviation

References

  1. Wu Z, Wang X, Yang R, Liu Y, Zhao W, Si J, Ma X, Sun C, Liu Y, Tan Y, Liu W, Zhang X, Di C, Wang Z, Zhang H, Zhang Z (2013) Effects of carbon ion beam irradiation on lung injury and pulmonary fibrosis in mice. Exp Ther Med 5:771–776

    PubMed Central  PubMed  Google Scholar 

  2. Chen GT, Castro JR, Quivey JM (1981) Heavy charged particle radiotherapy. Ann Rev Biophys Bioeng 10:499–529

    Article  CAS  Google Scholar 

  3. Kraft G (2000) Tumor therapy with heavy charged particles. Prog Part Nucl Phys 45:S473–S544

    Article  Google Scholar 

  4. Terato H, Ide H (2004) Clustered DNA damage induced by heavy ion particles. Biol Sci Space 18:206–215

    Article  PubMed  Google Scholar 

  5. Hada M, Georgakilas AG (2008) Formation of clustered DNA damage after high-LET irradiation: a review. J Radiat Res 49:203–210

    Article  CAS  PubMed  Google Scholar 

  6. Tsuchida Y, Tsuboi K, Ohyama H, Ohno T, Nose T, Ando K (1998) Cell death induced by high-linear-energy transfer carbon beams in human glioblastoma cell lines. Brain Tumor Pathol 15:71–76

    Article  CAS  PubMed  Google Scholar 

  7. Duan X, Zhang H, Liu B, Li XD, Gao QX, Wu ZH (2008) Apoptosis of murine melanoma cells induced by heavy-ion radiation combined with Tp53 gene transfer. Int J Radiat Biol 84:211–217

    Article  CAS  PubMed  Google Scholar 

  8. Jinno-Oue A, Shimizu N, Hamada N, Wada S, Tanaka A, Shinagawa M, Ohtsuki T, Mori T, Saha MN, Hoque AS, Islam S, Kogure K, Funayama T, Kobayashi Y, Hoshino H (2010) Irradiation with carbon ion beams induces apoptosis, autophagy, and cellular senescence in a human glioma-derived cell line. Int J Radiat Oncol Biol Phys 76:229–241

    Article  CAS  PubMed  Google Scholar 

  9. Asaithamby A, Chen DJ (2011) Mechanism of cluster DNA damage repair in response to high-atomic number and energy particles radiation. Mutat Res 711:87–99

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. D’Silva I, Pelletier JD, Lagueux J, D’Amours D, Chaudhry MA, Weinfeld M, Lees-Miller SP, Poirier GG (1999) Relative affinities of poly(ADP-ribose) polymerase and DNA-dependent protein kinase for DNA strand interruptions. Biochim Biophys Acta 1430:119–126

    Article  PubMed  Google Scholar 

  11. Dantzer F, de La Rubia G, Menissier-De Murcia J, Hostomsky Z, de Murcia G, Schreiber V (2000) Base excision repair is impaired in mammalian cells lacking Poly(ADP-ribose) polymerase-1. Biochemistry 39:7559–7569

    Article  CAS  PubMed  Google Scholar 

  12. Löser DA, Shibata A, Shibata AK, Woodbine LJ, Jeggo PA, Chalmers AJ (2010) Sensitization to radiation and alkylating agents by inhibitors of poly(ADP-ribose) polymerase is enhanced in cells deficient in DNA double-strand break repair. Mol Cancer Ther 9:1775–1787

    Article  PubMed Central  PubMed  Google Scholar 

  13. Calabrese CR, Almassy R, Barton S, Batey MA, Calvert AH, Canon-koch S, Durkcz BW, Hostomsky Z et al (2004) Anticancer chemopotentiation and radiosensitization by the novel poly(ADP-ribose) polymerase-1 inhibitor AG14361. J Natl Cancer Inst 96:56–67

    Article  CAS  PubMed  Google Scholar 

  14. Veuger SJ, Curtin NJ, Richardson CJ, Smith GC, Durkcz BW (2003) Radiosensitisation and DNA repair inhibition by the combined use of novel inhibitors of DNA dependent protein kinase and poly(ADP-ribose) polymerase-1. Cancer Res 63:6008–6015

    CAS  PubMed  Google Scholar 

  15. Beneke S, Diefenbach J, Burkle A (2004) Poly(ADP-ribosyl)ation inhibition: promising drug candidates for a wide variety of pathophysiologic conditions. Int J Cancer 111:813–818

    Article  CAS  PubMed  Google Scholar 

  16. Weltin D, Holl V, Hyun JW, Dufour P, Marchal J, Bischoff P (1997) Effects of 6(5H)-phenanthridinone, a poly(ADP-ribose) polymerase inhibitor, and ionizing radiation on the growth of cultured lymphoma cells. Int J Radiat Biol 72:685–692

    Article  CAS  PubMed  Google Scholar 

  17. Takahisa H, Hidenori S, Hiroaki F, Ryuichi O, Keisuke S, Mitsuko M (2012) Radiosensitization effect of poly(ADP-ribose) polymerase inhibition in cells exposed to low and high liner energy transfer radiation. Cancer Sci 103:1045–1050

    Article  Google Scholar 

  18. Ghorai A, Bhattacharyya NP, Sarma A, Ghosh U (2014) Radiosensitivity and induction of apoptosis by high LET carbon ion beam and low let gamma radiation: a comparative study. Scientifica. doi:10.1155/2014/438030

    PubMed Central  PubMed  Google Scholar 

  19. Di CX, Yang LN, Zhang H, An LZ, Zhang X, Ma XF, Sun C, Wang XH, Yang R, Wu ZH, Si J (2013) Effects of carbon-ion beam or X-ray irradiation on anti-apoptosis ∆Np73 expression in HeLa cells. Gene 515:208–213

    Article  CAS  PubMed  Google Scholar 

  20. Ma J, Ye L, Da M, Wang X (2009) Heavy ion irradiation increases apoptosis and STAT-3 expression, led to the cells arrested at G2/M phase in human hepatoma SMMC-7721 cells. Mol Cell Biochem 328:17–23

    Article  CAS  PubMed  Google Scholar 

  21. Liu B, Zhang H, Zhou G, Xie Y, Hao J, Zhou Q, Duan X, Qiu R (2008) Enhanced cell death by AdCMV-p53 after irradiation of HeLa cells with 12C 6+ ions. Eur J Obstet Gynecol Reprod Biol 138:226–231

    Article  CAS  PubMed  Google Scholar 

  22. Liu B, Zhang H, Xie Y, Hao J, Duan X, Zhou Q, Qiu R, Zhou G (2007) Cell cycle and apoptosis alteration of human hepatocarcinoma cells by subclinical-dose 12C6 + -beam irradiation. Eur J Gastroenterol Hepatol 19:749–754

    Article  PubMed  Google Scholar 

  23. Mori E, Takahashi A, Yamakawa N, Kirita T, Ohnishi T (2009) High LET heavy ion radiation induces p53-independent apoptosis. J Radiat Res 50:37–42

    Article  PubMed  Google Scholar 

  24. Tomiyama A, Tachibana K, Suzuki K, Seino S, Sunayama J, Matsuda K-i, Sato A, Matsumoto Y, Nomiya T, Nemoto K, Yamashita H, Kayama T, Ando K, Kitanaka C (2010) MEK-ERK-dependent multiple caspase activation by mitochondrial proapoptotic Bcl-2 family proteins is essential for heavy ion irradiation-induced glioma cell death. Cell Death Dis 1:e60

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Slee EA, O’Connor DJ, Lu X (2004) To die or not to die: how does p53 decide? Oncogene 23:2809–2818

    Article  CAS  PubMed  Google Scholar 

  26. Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev Cancer 2:594–604

    Article  CAS  PubMed  Google Scholar 

  27. Efeyan A, Serrano M (2007) p53: guardian of the genome and policeman of the oncogenes. Cell Cycle 6:1006–1010

    Article  CAS  PubMed  Google Scholar 

  28. Lane D (1992) p53, guardian of the genome. Nature 358:15–16

    Article  CAS  PubMed  Google Scholar 

  29. McIlwrath AJ, Vasey PA, Ross GM, Brown R (1994) Cell cycle arrests and radiosensitivity of human tumor cell lines dependence on wild-type p53 for radiosensitivity. Cancer Res 54:3718–3722

    CAS  PubMed  Google Scholar 

  30. Lee J, Bernstein A (1993) p53 mutations increase resis-tance to ionizing radiation. Proc Natl Acad Sci USA 90:5742–5746

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Bristow RG, Jang A, Peacock J, Chung S, Benchimol S, Hill RP (1994) Mutant p53 increases radioresistance in rat embryo fibroblasts simultaneously transfected with HPV16-E7 and/or activated H-ras. Oncogene 9:1527–1536

    CAS  PubMed  Google Scholar 

  32. Tsuboi K, Tsuchida Y, Nose T, Ando K (1998) Cyto-toxic effect of accelerated carbon beams on glioblastoma cell line with p53 mutation clonogenic survival and cell-cycle analysis. Int J Radiat Oncol Biol Phys 74:71–79

    Article  CAS  Google Scholar 

  33. Takahashi A, Yano T, Matsumoto H, Wang X, Ohnishi K, Tamamoto T, Tsuji K, Yukawa O, Ohnishi T (1998) Effects of accelerated carbon-ions on growth inhibition of transplantable human esophageal cancer in nude mice. Cancer Lett 122:181–186

    Article  CAS  PubMed  Google Scholar 

  34. Takahashi A, Matsumoto H, Yuki K, Yasumoto J, Kajiwara A, Aoki M, Furusawa Y, Ohnishi K, Ohnishi T (2004) High-LET radiation enhanced apoptosis but not necrosis regardless of p53 status. Int J Radiat Oncol Biol Phys 60:591–597

    Article  PubMed  Google Scholar 

  35. Takahashi A, Yano T, Matsumoto H, Wang X, Ohnishi K, Tamamoto T, Tsuji K, Yukawa O, Ohnishi T (2005) Apoptosis induced by high-LET radiation is not affected by cellular p53 gene status. Int J Radiat Biol 81:581–586

    Article  CAS  PubMed  Google Scholar 

  36. Yamakawa N, Takahashi A, Mori E, Imai Y, Furusawa Y, Ohnishi K, Kirita T, Ohnishi T (2008) High LET radiation enhances apoptosis in mutated p53 cancer cells through Caspase-9 activation. Cancer Sci 99:1455–1460

    Article  CAS  PubMed  Google Scholar 

  37. Efimova EV, Mauceri HJ, Golden DW, Labay E, Bindokas VP, Darga TE, Chakraborty C, Barreto-Andrade JC, Crawley C, Sutton HG, Kron SJ, Weichselbaum RR (2010) Poly(ADP-ribose) polymerase inhibitor induces accelerated senescence in irradiated breast cancer cells and tumors. Cancer Res 70:6277–6282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Khan K, Araki K, Wang D, Li G, Li X, Zhang J, Xu W, Hoover RK, Lauter S, O’Malley B Jr, Lapidus RG, Li D (2010) Head and neck cancer radiosensitization by the novel poly(ADP-ribose) polymerase inhibitor GPI-15427. Head Neck 32:381–391

    PubMed  Google Scholar 

  39. Rosenthal DS, Ding R, Simbulan-Rosenthal CM, Vaillancourt JP, Nicholson DW, Smulson ME (1997) Intact cell evidence for the early synthesis, and subsequent late apopain-mediated suppression, of poly(ADP-ribose) during apoptosis. Exp Cell Res 232:313–321

    Article  CAS  PubMed  Google Scholar 

  40. Simbulan-Rosenthal CM, Rosenthal DS, Iyer S, Boulares AH, Smulson ME (1998) Transient poly(ADP-ribosyl)ation of nuclear proteins and role of poly(ADP-ribose) polymerase in the early stages of apoptosis. J Biol Chem 273:13703–13712

    Article  CAS  PubMed  Google Scholar 

  41. Wang ZQ, Auer B, Stingl L, Berghammer H, Haidacher D, Schweiger M, Wagner EW (1995) Mice lacking ADPRT and poly(ADP-ribosyl)ation develop normally but are susceptible to skin disease. Genes Dev 9:509–520

    Article  CAS  PubMed  Google Scholar 

  42. de Murcia JM, Niedergang C, Trucco C, Ricoul M, Dutrillaux B, Mark M, Oliver FJ, Masson M, Dierich A, LeMeur M, Walztinger C, Chambon P, de Murcia G (1997) Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc Natl Acad Sci USA 94:7303–7307

    Article  PubMed Central  PubMed  Google Scholar 

  43. Trucco C, Oliver FJ, de Murcia G, Menissier-de Murcia J (1998) DNA repair defect in poly ADP-ribose poly merase-deficient cell lines. Nuc Acids Res 26:2644–2649

    Article  CAS  Google Scholar 

  44. Masutani M, Nozaki T, Nishiyama E, Shimokawa T, Tachi Y, Suzuki H, Nakagama H, Wakabayashi K, Sugimura T (1999) Function of poly ADP-ribose polymerase in response to DNA damage: gene-disruption study in mice. Mol Cell Biochem 193:149–152

    Article  CAS  PubMed  Google Scholar 

  45. Masutani M, Suzuki H, Kamada N, Watanabe M, Ueda O, Nozaki T, Jishage K, Watanabe T, Sugimoto T, Nakagama H, Ochiya T, Sugimura T (1999) Poly ADP-ribose polymerase gene disruption conferred mice resistant to streptozotocin-induced diabetes. Proc Natl Acad Sci USA 96:2301–2304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Ghosh U, Pandit B, Dutta J, Bhattacharyya NP (2004) Induction of apoptosis by benzamide and its inhibition by aurin tricarboxylic acid (ATA) in Chinese hamster V79 cells. Mutat Res 554:121–129

    Article  CAS  PubMed  Google Scholar 

  47. Ghosh U, Bhattacharyya NP (2009) Induction of apoptosis by the inhibitors of poly(ADP-ribose)polymerase in HeLa cells. Mol Cell Biochem 320:15–23

    Article  CAS  PubMed  Google Scholar 

  48. Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC (1994) Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371:346–347

    Article  CAS  PubMed  Google Scholar 

  49. Germain M, Affar EB, D’Amours D, Dixit VM, Salvesen GS, Poirier GG (1999) Cleavage of automodified poly(ADP-ribose) polymerase during apoptosis. Evidence for involvement of caspase-7. J Biol Chem 274:28379–28384

    Article  CAS  PubMed  Google Scholar 

  50. Boucher D, Blais V, Denault JB (2012) Caspase-7 uses an exosite to promote poly(ADP ribose) polymerase 1 proteolysis. Proc Natl Acad Sci USA 109:5669–5674

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Ghosh U, Das N, Bhattacharyya NP (2007) Inhibition of telomerase activity by reduction of poly(ADP-ribosyl)ation of TERT and TEP1/TP1 expression in HeLa cells with knocked down poly(ADP-ribose) polymerase-1 (PARP-1) gene. Mutat Res 615:64–76

    Article  Google Scholar 

  52. Kraft-Weyrather W, Kraft G, Ritter S, Scholz M, Stanton JA (1989) The preparation of biological targets for heavy ion experiments up to 20 MeV/u. Nucl Instrum Methods Phys Res A282:22–27

    Article  CAS  Google Scholar 

  53. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  CAS  PubMed  Google Scholar 

  54. Gyori BM, Venkatachalam G, Thiagarajan PS, Hsu D, Clement M (2014) OpenComet: an automated tool for comet assay image analysis. Redox Biol 2:457–465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  Google Scholar 

  56. Giri K, Ghosh U, Bhattacharyya NP, Basak S (2003) Caspase 8 mediated apoptotic cell death induced by β-sheet forming polyalanine peptides. FEBS Lett 555:380–384

    Article  CAS  PubMed  Google Scholar 

  57. Saha NC, Biswas C, Ghorai A, Ghosh U, Seth SK, Kar T (2012) Synthesis, structural characterisation and cytotoxicity of new iron(III) complexes with pyrazolyl thiosemicarbazones. Polyhedron 34:1–12

    Article  CAS  Google Scholar 

  58. Yuan J, Chen J (2010) MRE11-RAD50-NBS1 complex dictates DNA repair independent of H2AX. J Biol Chem 285:1097–1104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Ghosh S, Bhat NN, Santra S, Thomas RG, Gupta SK, Choudhury RK, Krishna M (2010) Low energy proton beam induces efficient cell killing in A549 lung adenocarcinoma cells. Cancer Invest 28:615–622

    Article  CAS  PubMed  Google Scholar 

  60. Johnson LV, Walsh ML, Chen LB (1980) Localization of mitochondria in living cells with rhodamine 123. Proc Natl Acad Sci USA 77:990–994

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Baracca A, Sgarbi G, Solaini G, Lenaz G (2003) Rhodamine 123 as a probe of mitochondrial membrane potential: evaluation of proton flux through F0 during ATP synthesis. Biochim Biophys Acta 1606:137–146

    Article  CAS  PubMed  Google Scholar 

  62. Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA (2011) Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques 50:98–115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Studzinski GP (1999) Apoptosis: a practical approach. Oxford University Press, New York, pp 63–67

    Google Scholar 

  64. Bolte S, Cordelieres FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224:213–232

    Article  CAS  PubMed  Google Scholar 

  65. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    Article  CAS  PubMed  Google Scholar 

  66. Okamoto M, Koga S, Tatsuka M (2010) Differential regulation of caspase-9 by ionizing radiation- and UV-induced apoptotic pathways in thymic cells. Mutat Res 688:78–87

    Article  CAS  PubMed  Google Scholar 

  67. Gong B, Almasan A (2000) Apo2 Ligand/TNF-related apoptosis-inducing ligand and death receptor 5 mediate the apoptotic signaling induced by ionizing radiation in leukemic cells. Cancer Res 60:5754–5760

    CAS  PubMed  Google Scholar 

  68. Verbrugge I, de Vries E, Tait SWG, Wissink EHJ, Walczak H, Verheij M, Borst J (2008) Ionizing radiation modulates the TRAIL death-inducing signaling complex, allowing bypass of the mitochondrial apoptosis pathway. Oncogene 27:574–584

    Article  CAS  PubMed  Google Scholar 

  69. Chen T, Chen M, Chen J (2013) Ionizing radiation potentiates dihydroartemisinin-induced apoptosis of A549 cells via a caspase-8-dependent pathway. PLoS One 8:e59827

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Chen M, Zsengellér Z, Xiao CY, Szabó C (2004) Mitochondrial-to-nuclear translocation of apoptosis-inducing factor in cardiac myocytes during oxidant stress: potential role of poly(ADP-ribose) polymerase-1. Cardiovasc Res 63:682–688

    Article  CAS  PubMed  Google Scholar 

  71. Yuan K, Sun Y, Zhou T, McDonald J, Chen Y (2013) PARP-1 regulates resistance of pancreatic cancer to TRAIL therapy. Clin Cancer Res 19:4750–4759

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Lakin ND, Jackson SP (1999) Regulation of p53 in response to DNA damage. Oncogene 18:7644–7655

    Article  CAS  PubMed  Google Scholar 

  73. Burns TF, El-Deiry WS (1999) The p53 pathway and apoptosis. J Cell Physiol 181:231–239

    Article  CAS  PubMed  Google Scholar 

  74. Kapoor M, Hamm R, Yan W, Taya Y, Lozano G (2000) Cooperative phosphorylation at multiple sites is required to activate p53 in response to UV radiation. Oncogene 19:358–364

    Article  CAS  PubMed  Google Scholar 

  75. Kumari SR, Mendoza-Alvarez H, Alvarez-Gonzalez R (1998) Functional interactions of p53 with poly(ADP-ribose) polymerase (PARP) during apoptosis following DNA damage: covalent poly(ADP-ribosyl)ation of p53 by exogenous PARP and noncovalent binding of p53 to the M(r) 85,000 proteolytic fragment. Cancer Res 58:5075–5078

    CAS  PubMed  Google Scholar 

  76. Mandir AS, Simbulan-Rosenthal CM, Poitras MF, Lumpkin JR, Dawson VL, Smulson ME, Dawson TM (2002) A novel in vivo posttranslational modification of p53 by PARP-1 in MPTP-induced parkinsonism. J Neurochem 83:186–192

    Article  CAS  PubMed  Google Scholar 

  77. Valenzuela MT, Guerrero R, Núñez MI, Ruiz de Almodóvar JM, Sarker M, de Murcia G, Oliver FJ (2002) PARP-1 modifies the effectiveness of p53-mediated DNA damage response. Oncogene 21:1108–1116

    Article  CAS  PubMed  Google Scholar 

  78. Pellegata NS, Antoniono RJ, Redpath JL, Stanbridge EJ (1996) DNA damage and p53-mediated cell cycle arrest: a reevaluation. Proc Natl Acad Sci USA 93:15209–15214

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Amundson SA, Myers TG, Fornace AJ Jr (1998) Roles for p53 in growth arrest and apoptosis: putting on the breaks after genotoxic stress. Oncogene 17:3287–3299

    Article  PubMed  Google Scholar 

  80. Badie C, Bourhis J, Sobczak-Thépot J, Haddada H, Chiron M, Janicot M, Janot F, Tursz T, Vassal G (2000) p53-dependent G2 arrest associated with a decrease in cyclins A2 and B1 levels in a human carcinoma cell line. B J Cancer 82:642–650

    Article  CAS  Google Scholar 

  81. Rao VA, Plunkett W (2003) Activation of a p53-mediated apoptotic pathway in quiescent lymphocytes after the inhibition of DNA repair by fludarabine. Clin Cancer Res 9:3204–3212

    CAS  PubMed  Google Scholar 

  82. Ohnishi T, Takahashi A, Mori E, Ohnishi K (2008) p53 targeting can enhance cancer therapy via radiation, heat and anti-cancer agents. Anticancer Agents Med Chem 8:564–570

    Article  CAS  PubMed  Google Scholar 

  83. Guo X, Li Y, Sun C, Jiang D, Lin Y, Jin F, Lee S, Jin Y (2014) p53-dependent Fas expression is critical for ginsenoside Rh2 triggered caspase-8 activation in HeLa cells. Protein Cell 5:224–234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

UG thanks Inter-University Accelerator Centre (IUAC), New Delhi for financial support as well as for availing instrumental facility. UG is grateful to Department of Science & Technology (DST), Govt. of India for providing infrastructural facility in Department of Biochemistry & Biophysics, University of Kalyani under DST-FIST program. UG thanks DST for partial fulfillment of financial support under project SR/SO/BB-0017. AG is grateful to Indian Council of Medical Research (ICMR), New Delhi for senior research fellowship. AG also acknowledges his gratitude to Dr. Geetanjali Pujari, Young Scientist (DST First Track Scheme), IUAC, New Delhi for her help during the irradiation of samples.

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utpal Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorai, A., Sarma, A., Bhattacharyya, N.P. et al. Carbon ion beam triggers both caspase-dependent and caspase-independent pathway of apoptosis in HeLa and status of PARP-1 controls intensity of apoptosis. Apoptosis 20, 562–580 (2015). https://doi.org/10.1007/s10495-015-1107-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-015-1107-3

Keywords

Navigation