Skip to main content

Advertisement

Log in

Mycobacterium tuberculosis 38-kDa antigen induces endoplasmic reticulum stress-mediated apoptosis via toll-like receptor 2/4

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Endoplasmic reticulum (ER) stress responses play critical roles in the pathogenesis of tuberculosis. To investigate the regulatory role of the ER stress response in 38-kDa antigen-induced apoptosis, we examined the relationship between the ER stress response and apoptosis in bone marrow-derived macrophages (BMDMs) stimulated with Mycobacterium tuberculosis antigen (38-kDa Ag). The expression of ER molecular chaperones, including C/EBP homologous protein (CHOP), glucose-regulated protein (Bip) and phosphorylated alpha subunit of eukaryotic initiation factor 2, was induced in BMDMs stimulated with the 38-kDa Ag. Interestingly, 38-kDa Ag-stimulation induced apoptosis via activation of caspase-12, -9 and -3. However, 38-kDa Ag-induced apoptosis was significantly reduced in TLR2- and TLR4-deficient macrophages. Because toll-like receptors (TLRs) initiate the activation of mitogen-activated protein kinase (MAPK) signaling cascades, we evaluated the effect of MAPK activation on ER stress. The 38-kDa Ag activated Jun N-terminal kinase, extracellular signal-regulated kinase and p38 phosphorylation. MAPK signaling induced the secretion of proinflammatory cytokines such as MCP-1, TNF-α and IL-6. The 38-kDa Ag-induced MCP-1 was especially associated with the induction of MCP-1-induced protein (MCPIP), which increased the generation of reactive oxygen species (ROS) and ER stress. To investigate the role of MCPIP in ROS-induced ER stress by 38-kDa Ag stimulation, we transfected MCPIP siRNA into RAW264.7 cells before 38-kDa Ag stimulation, and measured the generation of ROS and expression of ER molecular chaperones. ROS production and CHOP expression were decreased by the silencing of MCPIP induction. Our results demonstrate that the expression of MCPIP by 38-kDa Ag stimulation is increased through a TLR–MAPK-dependent signaling pathway, and leads to ER stress-induced apoptosis. In conclusion, MCPIP is important for host defense mechanisms in mycobacterial pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ER:

Endoplasmic reticulum

TB:

Tuberculosis

ROS:

Reactive oxygen species

CHOP:

C/EBP homologous protein

MCPIP:

Monocyte chemotactic protein-1 inducible protein

Mtb:

Mycobacterium tuberculosis

eIF2α:

Eukaryotic translation initiation factor 2A

GADD153:

Growth arrest and DNA damage induced gene-153

UPR:

Unfolded protein response

References

  1. Sasindran SJ, Torrelles JB (2011) Mycobacterium tuberculosis infection and inflammation: what is beneficial for the host and for the bacterium? Front Microbiol 2:2

    Article  PubMed Central  PubMed  Google Scholar 

  2. Lee J, Hartman M, Kornfeld H (2009) Macrophage apoptosis in tuberculosis. Yonsei Med J 50:1–11

    Article  PubMed Central  PubMed  Google Scholar 

  3. Santucci MB, Amicosante M, Cicconi R, Montesano C, Casarini M, Giosuè S et al (2000) Mycobacterium tuberculosis-induced apoptosis in monocytes/macrophages: early membrane modifications and intracellular mycobacterial viability. J Infect Dis 181:1506–1509

    Article  CAS  PubMed  Google Scholar 

  4. Behar SM, Martin CJ, Booty MG, Nishimura T, Zhao X, Gan HX et al (2011) Apoptosis is an innate defense function of macrophages against Mycobacterium tuberculosis. Mucosal Immunol 4:279–287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Smith I (2003) Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev 16:463–496

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Sanchez A, Espinosa P, Esparza MA, Colon M, Bernal G, Mancilla R (2009) Mycobacterium tuberculosis 38-kDa lipoprotein is apoptogenic for human monocyte-derived macrophages. Scand J Immunol 69:20–28

    Article  CAS  PubMed  Google Scholar 

  7. Ciaramella A, Cavone A, Santucci MB, Garg SK, Sanarico N, Bocchino M et al (2004) Induction of apoptosis and release of interleukin-1 beta by cell wall-associated 19-kDa lipoprotein during the course of mycobacterial infection. J Infect Dis 190:1167–1176

    Article  CAS  PubMed  Google Scholar 

  8. Choi HH, Shin DM, Kang G, Kim KH, Park JB, Hur GM et al (2010) Endoplasmic reticulum stress response is involved in Mycobacterium tuberculosis protein ESAT-6-mediated apoptosis. FEBS Lett 584:2445–2454

    Article  CAS  PubMed  Google Scholar 

  9. Choi JA, Lim YJ, Cho SN, Lee JH, Jeong JA, Kim EJ et al (2013) Mycobacterial HBHA induces endoplasmic reticulum stress-mediated apoptosis through the generation of reactive oxygen species and cytosolic Ca2+ in murine macrophage RAW 264.7 cells. Cell Death Dis 4:e957

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Basu S, Pathak SK, Banerjee A, Pathak S, Bhattacharyya A, Yang Z et al (2007) Execution of macrophage apoptosis by PE_PGRS33 of Mycobacterium tuberculosis is mediated by toll-like receptor 2-dependent release of tumor necrosis factor-alpha. J Biol Chem 282:1039–1050

    Article  CAS  PubMed  Google Scholar 

  11. Harboe M, Wiker HG (1992) The 38-kDa protein of Mycobacterium tuberculosis: a review. J Infect Dis 166:874–884

    Article  CAS  PubMed  Google Scholar 

  12. Jo EK (2008) Mycobacterial interaction with innate receptors: TLRs, C-type lectins, and NLRs. Curr Opin Infect Dis 21:279–286

    Article  CAS  PubMed  Google Scholar 

  13. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol 11:373–384

    Article  CAS  PubMed  Google Scholar 

  14. Sanchez D, Rojas M, Hernandez I, Radzioch D, Garcia LF, Barrera LF (2010) Role of TLR2- and TLR4-mediated signaling in Mycobacterium tuberculosis-induced macrophage death. Cell Immunol 260:128–136

    Article  CAS  PubMed  Google Scholar 

  15. Fietta AM, Morosini M, Meloni F, Bianco AM, Pozzi E (2002) Pharmacological analysis of signal transduction pathways required for Mycobacterium tuberculosis-induced IL-8 and MCP-1 production in human peripheral monocytes. Cytokine 19:242–249

    Article  CAS  PubMed  Google Scholar 

  16. Song CH, Lee JS, Lee SH, Lim K, Kim HJ, Park JK et al (2003) Role of mitogen-activated protein kinase pathways in the production of tumor necrosis factor-alpha, interleukin-10, and monocyte chemotactic protein-1 by Mycobacterium tuberculosis H37Rv-infected human monocytes. J Clin Immunol 23:194–201

    Article  CAS  PubMed  Google Scholar 

  17. Liang J, Song W, Tromp G, Kolattukudy PE, Fu M (2008) Genome-wide survey and expression profiling of CCCH-zinc finger family reveals a functional module in macrophage activation. PLoS ONE 3:e2880

    Article  PubMed Central  PubMed  Google Scholar 

  18. Younce CW, Kolattukudy PE (2010) MCP-1 causes cardiomyoblast death via autophagy resulting from ER stress caused by oxidative stress generated by inducing a novel zinc-finger protein, MCPIP. Biochem J 426:43–53

    Article  CAS  PubMed  Google Scholar 

  19. Wang K, Niu J, Kim H, Kolattukudy PE (2011) Osteoclast precursor differentiation by MCPIP via oxidative stress, endoplasmic reticulum stress, and autophagy. J Mol Cell Biol 3:360–368

    Article  PubMed Central  PubMed  Google Scholar 

  20. Younce C, Kolattukudy P (2012) MCP-1 induced protein promotes adipogenesis via oxidative stress, endoplasmic reticulum stress and autophagy. Cell Physiol Biochem: Int J Exp Cell Physiol, Biochem Pharmacol 30:307–320

    Article  CAS  Google Scholar 

  21. Roy A, Kolattukudy PE (2012) Monocyte chemotactic protein-induced protein (MCPIP) promotes inflammatory angiogenesis via sequential induction of oxidative stress, endoplasmic reticulum stress and autophagy. Cell Signal 24:2123–2131

    Article  CAS  PubMed  Google Scholar 

  22. Kolattukudy PE, Niu J (2012) Inflammation, endoplasmic reticulum stress, autophagy, and the monocyte chemoattractant protein-1/CCR2 pathway. Circ Res 110:174–189

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Lim YJ, Choi JA, Choi HH, Cho SN, Kim HJ, Jo EK et al (2011) Endoplasmic reticulum stress pathway-mediated apoptosis in macrophages contributes to the survival of Mycobacterium tuberculosis. PLoS ONE 6:e28531

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Szegezdi E, Logue SE, Gorman AM, Samali A (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7:880–885

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Gorman AM, Healy SJ, Jager R, Samali A (2012) Stress management at the ER: regulators of ER stress-induced apoptosis. Pharmacol Ther 134:306–316

    Article  CAS  PubMed  Google Scholar 

  26. Seimon TA, Kim MJ, Blumenthal A, Koo J, Ehrt S, Wainwright H et al (2010) Induction of ER stress in macrophages of tuberculosis granulomas. PLoS ONE 5:e12772

    Article  PubMed Central  PubMed  Google Scholar 

  27. Rasheva VI, Domingos PM (2009) Cellular responses to endoplasmic reticulum stress and apoptosis. Apoptosis Int J Progr Cell Death 14:996–1007

    Article  Google Scholar 

  28. Song C-H (2012) Endoplasmic reticulum stress responses and apoptosis. J Bacteriol Virol 42:196

    Article  CAS  Google Scholar 

  29. Jung SB, Yang CS, Lee JS, Shin AR, Jun SS, Son JW et al (2006) The mycobacterial 38-kilodalton glycolipoprotein antigen activates the mitogen-activated protein kinase pathway and release of proinflammatory cytokines through toll-like receptors 2 and 4 in human monocytes. Infect Immun 74:2686–2696

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Tan BJ, Chiu GN (2013) Role of oxidative stress, endoplasmic reticulum stress and ERK activation in triptolide-induced apoptosis. Int J Oncol 42:1605–1612

    CAS  PubMed  Google Scholar 

  31. Lahti A, Sareila O, Kankaanranta H, Moilanen E (2006) Inhibition of p38 mitogen-activated protein kinase enhances c-Jun N-terminal kinase activity: implication in inducible nitric oxide synthase expression. BMC Pharmacol 6:5

    Article  PubMed Central  PubMed  Google Scholar 

  32. Hasan Z, Cliff JM, Dockrell HM, Jamil B, Irfan M, Ashraf M et al (2009) CCL2 responses to Mycobacterium tuberculosis are associated with disease severity in tuberculosis. PLoS ONE 4:e8459

    Article  PubMed Central  PubMed  Google Scholar 

  33. Yang CS, Lee HM, Lee JY, Kim JA, Lee SJ, Shin DM et al (2007) Reactive oxygen species and p47phox activation are essential for the Mycobacterium tuberculosis-induced pro-inflammatory response in murine microglia. J Neuroinflammation 4:27

    Article  PubMed Central  PubMed  Google Scholar 

  34. Benham AM, van Lith M, Sitia R, Braakman I (2013) Ero1-PDI interactions, the response to redox flux and the implications for disulfide bond formation in the mammalian endoplasmic reticulum. Philos Trans R Soc Lond B Biol Sci 368:20110403

    Article  PubMed Central  PubMed  Google Scholar 

  35. Lim YJ, Choi HH, Choi JA, Jeong JA, Cho SN, Lee JH et al (2013) Mycobacterium kansasii-induced death of murine macrophages involves endoplasmic reticulum stress responses mediated by reactive oxygen species generation or calpain activation. Apoptosis Int J Progr Cell Death 18:150–159

    Article  CAS  Google Scholar 

  36. Sohn H, Kim JS, Shin SJ, Kim K, Won CJ, Kim WS et al (2011) Targeting of Mycobacterium tuberculosis heparin-binding hemagglutinin to mitochondria in macrophages. PLoS Pathog 7:e1002435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Nishitoh H, Matsuzawa A, Tobiume K, Saegusa K, Takeda K, Inoue K et al (2002) ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 16:1345–1355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Song J, Park KA, Lee WT, Lee JE (2014) Apoptosis signal regulating kinase 1 (ASK1): potential as a therapeutic target for Alzheimer’s disease. Int J Mol Sci 15:2119–2129

    Article  PubMed Central  PubMed  Google Scholar 

  39. Chen Y, Hwang SL, Chan VS, Chung NP, Wang SR, Li Z et al (2013) Binding of HIV-1 gp120 to DC-SIGN promotes ASK-1-dependent activation-induced apoptosis of human dendritic cells. PLoS Pathog 9:e1003100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Roberson EC, Tully JE, Guala AS, Reiss JN, Godburn KE, Pociask DA et al (2012) Influenza induces endoplasmic reticulum stress, caspase-12-dependent apoptosis, and c-Jun N-terminal kinase-mediated transforming growth factor-beta release in lung epithelial cells. Am J Respir Cell Mol Biol 46:573–581

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Xu X, Liu T, Zhang A, Huo X, Luo Q, Chen Z et al (2012) Reactive oxygen species-triggered trophoblast apoptosis is initiated by endoplasmic reticulum stress via activation of caspase-12, CHOP, and the JNK pathway in Toxoplasma gondii infection in mice. Infect Immun 80:2121–2132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Aguilo N, Marinova D, Martin C, Pardo J (2013) ESX-1-induced apoptosis during mycobacterial infection: to be or not to be, that is the question. Front Cell Infect Microbiol 3:88

    Article  PubMed Central  PubMed  Google Scholar 

  43. Martinon F, Chen X, Lee AH, Glimcher LH (2010) TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat Immunol 11:411–418

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Uehata T, Akira S (2013) mRNA degradation by the endoribonuclease regnase-1/ZC3H12a/MCPIP-1. Biochim Biophys Acta 1829:708–713

    Article  CAS  PubMed  Google Scholar 

  45. Lin RJ, Chien HL, Lin SY, Chang BL, Yu HP, Tang WC et al (2013) MCPIP1 ribonuclease exhibits broad-spectrum antiviral effects through viral RNA binding and degradation. Nucleic Acids Res 41:3314–3326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2013R1A1A2009736), and by a grant of the Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (A121496). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest

The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hwa-Jung Kim or Chang-Hwa Song.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10495_2014_1080_MOESM1_ESM.eps

Supplementary material 1 Fig. S1. ER stress response and caspases activation by 38-kDa Ag was TLR-dependent. Immunoblot analysis of ER stress sensor molecules and caspases in (a) TLR2- or (b) TLR4-defecient BMDMs stimulated with 38-kDa Ag for 48 h. The data are shown as the means ± SD of three independent experiments. *p <0.05, ** p <0.01 and *** p <0.001. (EPS 2472 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, YJ., Choi, JA., Lee, JH. et al. Mycobacterium tuberculosis 38-kDa antigen induces endoplasmic reticulum stress-mediated apoptosis via toll-like receptor 2/4. Apoptosis 20, 358–370 (2015). https://doi.org/10.1007/s10495-014-1080-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-014-1080-2

Keywords

Navigation