Skip to main content
Log in

RIP1-dependent Bid cleavage mediates TNFα-induced but Caspase-3-independent cell death in L929 fibroblastoma cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

L929 fibroblastoma cells (L929-A) and L929 fibrosarcoma cells (L929-N) are different cell lines that are commonly used to study the cytotoxicity of tumor necrosis factor alpha (TNFα). TNFα has been reported to induce necrosis in both of these cell lines. However, comparing the TNFα-induced cell death in these two cell lines, we found that, unlike the L929-N cells that show typical RIP3-dependent necrosis, TNFα-induced cell death in L929-A cells is pan-caspase inhibitor Z-VAD-FMK (Z-VAD)-sensitive, which does not depend on RIP3. We also confirmed that the cell death signal in the L929-A cells was initiated through cytosol-preassembled ripoptosome and that the knockdown of either Caspase-8 or RIP1 protein blocked cell death. Compared with the L929-N cells, the L929-A cell line had lower levels of constitutive and inducible TNFα autocrine production, and the pan-caspase inhibitors Z-VAD or Q-VD did not kill the L929-A cells as they affect the L929-N cells. Moreover, the L929-A cells expressed less RIP3 protein than the L929-N cells; therefore, TNFα failed to induce RIP3-dependent necroptosis. In addition, the ripoptosome-mediated cell death signal was transduced to the mitochondria through Caspase-8-mediated and RIP1 kinase activity-dependent Bid cleavage. The RIP1 kinase inhibitor Necrostatin-1 (Nec-1) or Caspase-8 knockdown completely blocked Bid cleavage, and the knockdown of Bid or Bax/Bak prevented TNFα-induced cell death in the L929-A cells. Although the activation of Bax/Bak decreased the mitochondrial membrane potential, the levels of mitochondrial intermembrane space proteins, including cytochrome-c (cyt-C) and Smac, declined, and western blotting and immunofluorescence staining analysis did not determine whether these proteins were redistributed to the cytosol. In addition, the mitochondrial outer membrane protein Tom20 was also reduced, indicating that the reduced mitochondria proteins may be induced by the reduced mitochondria numbers. No efficient cyt-C release was observed; therefore, the limited activation and cleavage of downstream caspases, including Caspase-9, Caspase-7, Caspase-6 and Caspase-3, was insufficient to kill the cells. The Caspase-9, Caspase-6 and Caspase-3/7 inhibitors or Caspase-9 and -3 knockdown also failed to block cell death, and the overexpression of Bcl-2 also did not abrogate cell death. Moreover, the dead cells showed necrotic-like but not apoptotic characteristics under transmission electronmicroscopy, and these features were significantly different from mitochondrial apoptosis, indicating that the effector caspases were not the executioners of cell death. These new discoveries show that TNFα-induced cell death in L929-A cells is different than typical RIP3-dependent necrosis and Caspase-8/Caspase-3-mediated apoptosis. These results highlight that caution is necessary when using different L929 cells as a model to investigate TNFα-induced cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

TNFα:

Tumor necrosis factor alpha

Z-VAD:

Z-VAD-FMK

Nec-1:

Necrostatin-1

MMP:

Mitochondrial membrane potential

ROS:

Reactive oxygen species

cyt-C:

Cytochrome-c

References

  1. Berghe TV et al (2009) Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ 17(6):922–930

    Article  Google Scholar 

  2. Kroemer G et al (2008) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16(1):3–11

    Article  PubMed Central  PubMed  Google Scholar 

  3. Christofferson DE, Yuan J (2010) Necroptosis as an alternative form of programmed cell death. Curr Opin Cell Biol 22(2):263–268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Han J, Zhong C-Q, Zhang D-W (2011) Programmed necrosis: backup to and competitor with apoptosis in the immune system. Nat Immunol 12(12):1143–1149

    Article  CAS  PubMed  Google Scholar 

  5. Dickens LS et al (2012) The ‘complexities’ of life and death: death receptor signalling platforms. Exp Cell Res 318(11):1269–1277

    Article  CAS  PubMed  Google Scholar 

  6. Festjens N et al (2007) RIP1, a kinase on the crossroads of a cell’s decision to live or die. Cell Death Differ 14(3):400–410

    Article  CAS  PubMed  Google Scholar 

  7. O’Donnell MA et al (2007) Ubiquitination of RIP1 regulates an NF-κB-independent cell-death switch in TNF signaling. Curr Biol 17(5):418–424

    Article  PubMed Central  PubMed  Google Scholar 

  8. Wang L, Du F, Wang X (2008) TNF-α induces two distinct Caspase-8 activation pathways. Cell 133(4):693–703

    Article  CAS  PubMed  Google Scholar 

  9. Vanlangenakker N et al (2011) TNF-induced necroptosis in L929 cells is tightly regulated by multiple TNFR1 complex I and II members. Cell Death Dis 2(11):e230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114(2):181–190

    Article  CAS  PubMed  Google Scholar 

  11. Luo X et al (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94(4):481–490

    Article  CAS  PubMed  Google Scholar 

  12. Li H et al (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94(4):491–501

    Article  CAS  PubMed  Google Scholar 

  13. Cho Y et al (2009) Phosphorylation-Driven Assembly of the RIP1-RIP3 Complex Regulates Programmed Necrosis and Virus-Induced Inflammation. Cell 137(6):1112–1123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. He S et al (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell 137(6):1100–1111

    Article  CAS  PubMed  Google Scholar 

  15. Zhang DW et al (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325(5938):332–336

    Article  CAS  PubMed  Google Scholar 

  16. O’Donnell MA et al (2011) Caspase 8 inhibits programmed necrosis by processing CYLD. Nat Cell Biol 13(12):1437–1442

    Article  PubMed Central  PubMed  Google Scholar 

  17. Vanlangenakker N, Vanden Berghe T, Vandenabeele P (2011) Many stimuli pull the necrotic trigger, an overview. Cell Death Differ 19(1):75–86

    Article  PubMed Central  PubMed  Google Scholar 

  18. Feoktistova M et al (2011) cIAPs block Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol Cell 43(3):449–463

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Tenev T et al (2011) The ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol Cell 43(3):432–448

    Article  CAS  PubMed  Google Scholar 

  20. Humphreys DT, Wilson MR (1999) Modes of L929 cell death induced by TNF-alpha and other cytotoxic agents. Cytokine 11(10):773–782

    Article  CAS  PubMed  Google Scholar 

  21. Fady C et al (1995) Atypical apoptotic cell death induced in L929 targets by exposure to tumor necrosis factor. J Interferon Cytokine Res 15(1):71–80

    Article  CAS  PubMed  Google Scholar 

  22. Mirkina II et al (1996) Cytolytic processes induced by TNF in L929 and K562 differ in DNA fragmentation mechanisms. Immunol Lett 52(2–3):105–108

    Article  CAS  PubMed  Google Scholar 

  23. Wang J et al (2010) Selective unresponsiveness to the inhibition of p38 MAPK activation by cAMP helps L929 fibroblastoma cells escape TNF-alpha-induced cell death. Mol Cancer 9:6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Vercammen D et al (1998) Dual signaling of the Fas receptor: initiation of both apoptotic and necrotic cell death pathways. J Exp Med 188(5):919–930

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Vercammen D et al (1997) Tumour necrosis factor-induced necrosis versus anti-Fas-induced apoptosis in L929 cells. Cytokine 9(11):801–808

    Article  CAS  PubMed  Google Scholar 

  26. Grooten J et al (1993) Cell membrane permeabilization and cellular collapse, followed by loss of dehydrogenase activity: early events in tumour necrosis factor-induced cytotoxicity. Cytokine 5(6):546–555

    Article  CAS  PubMed  Google Scholar 

  27. Cho Y et al (2011) RIP1-dependent and independent effects of necrostatin-1 in necrosis and T cell activation. PLoS One 6(8):e23209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Ye YC et al (2011) TNFalpha-induced necroptosis and autophagy via supression of the p38-NF-kappaB survival pathway in L929 cells. J Pharmacol Sci 117(3):160–169

    Article  CAS  PubMed  Google Scholar 

  29. Wu YT et al (2008) Autophagy plays a protective role during zVAD-induced necrotic cell death. Autophagy 4(4):457–466

    Article  CAS  PubMed  Google Scholar 

  30. Vercammen D et al (1998) Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J Exp Med 187(9):1477–1485

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Wu YT et al (2010) zVAD-induced necroptosis in L929 cells depends on autocrine production of TNFα mediated by the PKC–MAPKs–AP-1 pathway. Cell Death Differ 18(1):26–37

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Newton K et al (2014) Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. Science 343(6177):1357–1360

    Article  CAS  PubMed  Google Scholar 

  33. Slee EA, Keogh SA, Martin SJ (2000) Cleavage of BID during cytotoxic drug and UV radiation-induced apoptosis occurs downstream of the point of Bcl-2 action and is catalysed by caspase-3: a potential feedback loop for amplification of apoptosis-associated mitochondrial cytochrome c release. Cell Death Differ 7(6):556–565

    Article  CAS  PubMed  Google Scholar 

  34. Deng Y et al (2003) A JNK-dependent pathway is required for TNFalpha-induced apoptosis. Cell 115(1):61–70

    Article  CAS  PubMed  Google Scholar 

  35. Sakon S et al (2003) NF-kappaB inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. EMBO J 22(15):3898–3909

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Kamata H et al (2005) Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120(5):649–661

    Article  CAS  PubMed  Google Scholar 

  37. Cabon L et al (2011) BID regulates AIF-mediated caspase-independent necroptosis by promoting BAX activation. Cell Death Differ 19(2):245–256

    Article  PubMed Central  PubMed  Google Scholar 

  38. Droga-Mazovec G et al (2008) Cysteine cathepsins trigger caspase-dependent cell death through cleavage of bid and antiapoptotic Bcl-2 homologues. J Biol Chem 283(27):19140–19150

    Article  CAS  PubMed  Google Scholar 

  39. Miao Q et al (2008) Chymotrypsin B cached in rat liver lysosomes and involved in apoptotic regulation through a mitochondrial pathway. J Biol Chem 283(13):8218–8228

    Article  CAS  PubMed  Google Scholar 

  40. Smith DJ et al (2008) The mitochondrial gateway to cell death. IUBMB Life 60(6):383–389

    Article  CAS  PubMed  Google Scholar 

  41. Jourdain A, Martinou J-C (2009) Mitochondrial outer-membrane permeabilization and remodelling in apoptosis. Int J Biochem Cell Biol 41(10):1884–1889

    Article  CAS  PubMed  Google Scholar 

  42. Chen SY et al (2011) zVAD-induced autophagic cell death requires c-Src-dependent ERK and JNK activation and reactive oxygen species generation. Autophagy 7(2):217–228

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Tischner D et al (2012) Necrosis-like death can engage multiple pro-apoptotic Bcl-2 protein family members. Apoptosis 17(11):1197–1209

    Article  CAS  PubMed  Google Scholar 

  44. Samraj AK et al (2006) Loss of caspase-9 provides genetic evidence for the type I/II concept of CD95-mediated apoptosis. J Biol Chem 281(40):29652–29659

    Article  CAS  PubMed  Google Scholar 

  45. Feoktistova M et al (2012) Pick your poison: the Ripoptosome, a cell death platform regulating apoptosis and necroptosis. Cell Cycle 11(3):460–467

    Article  CAS  PubMed  Google Scholar 

  46. Ye YC et al (2012) RIP1-mediated mitochondrial dysfunction and ROS production contributed to tumor necrosis factor alpha-induced L929 cell necroptosis and autophagy. Int Immunopharmacol 14(4):674–682

  47. Song G et al (2010) Bid stands at the crossroad of stress-response pathways. Curr Cancer Drug Targets 10(6):584–592

    Article  CAS  PubMed  Google Scholar 

  48. Milhas D et al (2005) Caspase-10 triggers Bid cleavage and caspase cascade activation in FasL-induced apoptosis. J Biol Chem 280(20):19836–19842

    Article  CAS  PubMed  Google Scholar 

  49. Upton JP et al (2008) Caspase-2 cleavage of BID is a critical apoptotic signal downstream of endoplasmic reticulum stress. Mol Cell Biol 28(12):3943–3951

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Wagner KW, Engels IH, Deveraux QL (2004) Caspase-2 can function upstream of bid cleavage in the TRAIL apoptosis pathway. J Biol Chem 279(33):35047–35052

    Article  CAS  PubMed  Google Scholar 

  51. Guicciardi ME et al (2005) Bid is upstream of lysosome-mediated caspase 2 activation in tumor necrosis factor alpha-induced hepatocyte apoptosis. Gastroenterology 129(1):269–284

    Article  CAS  PubMed  Google Scholar 

  52. Mandic A et al (2002) Calpain-mediated Bid cleavage and calpain-independent Bak modulation: two separate pathways in cisplatin-induced apoptosis. Mol Cell Biol 22(9):3003–3013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Sutton VR et al (2000) Initiation of apoptosis by granzyme B requires direct cleavage of bid, but not direct granzyme B-mediated caspase activation. J Exp Med 192(10):1403–1414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Stoka V et al (2001) Lysosomal protease pathways to apoptosis. Cleavage of bid, not pro-caspases, is the most likely route. J Biol Chem 276(5):3149–3157

    Article  CAS  PubMed  Google Scholar 

  55. Yin XM (2006) Bid, a BH3-only multi-functional molecule, is at the cross road of life and death. Gene 369:7–19

    Article  CAS  PubMed  Google Scholar 

  56. Festjens N et al (2005) Butylated hydroxyanisole is more than a reactive oxygen species scavenger. Cell Death Differ 13(1):166–169

    Article  Google Scholar 

  57. Wang X (2001) The expanding role of mitochondria in apoptosis. Genes Dev 15(22):2922–2933

    CAS  PubMed  Google Scholar 

  58. Yoshii SR et al (2011) Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J Biol Chem 286(22):19630–19640

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Geisler S et al (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12(2):119–131

    Article  CAS  PubMed  Google Scholar 

  60. Whelan RS et al (2012) Bax regulates primary necrosis through mitochondrial dynamics. Proc Natl Acad Sci USA 109(17):6566–6571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Hoppins S et al (2011) The soluble form of Bax regulates mitochondrial fusion via MFN2 homotypic complexes. Mol Cell 41(2):150–160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Wu S et al (2011) Bax is essential for Drp1-mediated mitochondrial fission but not for mitochondrial outer membrane permeabilization caused by photodynamic therapy. J Cell Physiol 226(2):530–541

    Article  CAS  PubMed  Google Scholar 

  63. Sheridan C et al (2008) Bax- or Bak-induced mitochondrial fission can be uncoupled from cytochrome C release. Mol Cell 31(4):570–585

    Article  CAS  PubMed  Google Scholar 

  64. Karbowski M et al (2002) Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J Cell Biol 159(6):931–938

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Arnoult D et al (2005) Bax/Bak-dependent release of DDP/TIMM8a promotes Drp1-mediated mitochondrial fission and mitoptosis during programmed cell death. Curr Biol 15(23):2112–2118

    Article  CAS  PubMed  Google Scholar 

  66. Lyamzaev KG et al (2008) Novel mechanism of elimination of malfunctioning mitochondria (mitoptosis): formation of mitoptotic bodies and extrusion of mitochondrial material from the cell. Biochim Biophys Acta 1777(7–8):817–825

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Yan Li and Yuqin Liu for kindly providing the L929 cell lines, and we thank Prof. Tao Zhou for sending the Bcl-xL plasmid. This work was supported in part by Grant 2012CB518200 from the “973” Program of the Ministry of Science and Technology of China (to X. Yu) and by Grants 31371434 (to X. Yu) and 31201041 (to G. Chen) from the National Natural Science Foundation of China.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodan Yu.

Additional information

Guozhu Chen and Xiang Cheng have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Cheng, X., Zhao, M. et al. RIP1-dependent Bid cleavage mediates TNFα-induced but Caspase-3-independent cell death in L929 fibroblastoma cells. Apoptosis 20, 92–109 (2015). https://doi.org/10.1007/s10495-014-1058-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-014-1058-0

Keywords

Navigation