Skip to main content
Log in

Autophagy inhibitors promoted aristolochic acid I induced renal tubular epithelial cell apoptosis via mitochondrial pathway but alleviated nonapoptotic cell death in mouse acute aritolochic acid nephropathy model

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Aristolochic acid I (AAI) can induce renal tubular epithelial cells (RTECs) autophagy, which thereby extenuates apoptosis in vitro. In this study, we aimed to determine whether the in vitro data also apply to the AAI-induced pathologic condition in vivo. BALB/c mice were treated with AAI, autophagy inhibitors [3-methyladenine (3MA) or chloroquine diphosphate salt (CQ)], and AAI plus the inhibitors for consecutive 5 days, respectively. Mice were euthanized on day 3 and 5. AAI induced RTECs autophagy was confirmed by electron microscopy and western blot. The results showed induction of apoptotic RTECs and up-regulation of mitochondrial and endoplasmic reticulum stress-related proteins in AAI-treated mice at both of the two time points. There were more apoptotic RTECs in AAI + inhibitor groups, which might be due to increased mitochondrial stress-related proteins (cytochrome C and apoptotic protease activating factor 1, APAF-1). On day 5, severe tubulointerstitial injuries induced by AAI led to a significant decline in kidney function. There were numerous autolysosomes in dying RTECs of the AAI group. Autophagy inhibitors increased AAI-induced RTECs mitochondrial apoptosis by increasing mitochondrial stress-related proteins, but they partially mitigated the AAI-induced severe renal tubulointerstitial injury. These results confirmed that AAI could induce autophagy in RTECs, which prevented apoptosis via mitochondrial pathway in vivo. However, continuous stimulation with AAI induced excess autophagy, which ultimately resulted in AAI-induced cell death. It suggested that apoptosis wasn’t the main culprit in acute aristolochic acid nephropathy mice model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Su Z, Xu S, Zheng F, Li Y (2002) [Aristolochic acid induced transdifferentiation and apoptosis in human tubular epithelial cells in vitro]. Zhonghua Yu Fang Yi Xue Za Zhi 36:301–304

    CAS  PubMed  Google Scholar 

  2. Zhou L, Fu P, Huang XR, Liu F, Lai KN, Lan HY (2010) Activation of p53 promotes renal injury in acute aristolochic acid nephropathy. J Am Soc Nephrol 21:31–41

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Romanov V, Whyard T, Bonala R, Johnson F, Grollman A (2011) Glutamate dehydrogenase requirement for apoptosis induced by aristolochic acid in renal tubular epithelial cells. Apoptosis 16:1217–1228

    Article  CAS  PubMed  Google Scholar 

  4. Wang Z, Zhao J, Zhang J, Wei J, Huang Y (2010) Protective effect of BMP-7 against aristolochic acid-induced renal tubular epithelial cell injury. Toxicol Lett 198:348–357

    Article  CAS  PubMed  Google Scholar 

  5. Eskelinen EL, Saftig P (2009) Autophagy: a lysosomal degradation pathway with a central role in health and disease. Biochim Biophys Acta 1793:664–673

    Article  CAS  PubMed  Google Scholar 

  6. Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Zeng Y, Yang X, Wang J, Fan J, Kong Q, Yu X (2012) Aristolochic acid I induced autophagy extenuates cell apoptosis via ERK 1/2 pathway in renal tubular epithelial cells. PLoS One 7:e30312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Jiang M, Liu K, Luo J, Dong Z (2010) Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury. Am J Pathol 176:1181–1192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Kaushal GP, Kaushal V, Herzog C, Yang C (2008) Autophagy delays apoptosis in renal tubular epithelial cells in cisplatin cytotoxicity. Autophagy 4:710–712

    CAS  PubMed  Google Scholar 

  10. Liu S, Hartleben B, Kretz O, Wiech T, Igarashi P, Mizushima N et al (2012) Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury. Autophagy 8:826–837

    Article  CAS  PubMed  Google Scholar 

  11. Pallet N, Bouvier N, Legendre C, Gilleron J, Codogno P, Beaune P et al (2008) Autophagy protects renal tubular cells against cyclosporine toxicity. Autophagy 4:783–791

    CAS  PubMed  Google Scholar 

  12. Periyasamy-Thandavan S, Jiang M, Wei Q, Smith R, Yin XM, Dong Z (2008) Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells. Kidney Int 74:631–640

    Article  CAS  PubMed  Google Scholar 

  13. Li L, Zepeda-Orozco D, Black R, Lin F (2010) Autophagy is a component of epithelial cell fate in obstructive uropathy. Am J Pathol 176:1767–1778

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Clarke PG (1990) Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol (Berl) 181:195–213

    Article  CAS  Google Scholar 

  15. Clarke PG, Puyal J (2012) Autophagic cell death exists. Autophagy 8:867–869

    Article  PubMed Central  PubMed  Google Scholar 

  16. Vanherweghem JL, Depierreux M, Tielemans C, Abramowicz D, Dratwa M, Jadoul M et al (1993) Rapidly progressive interstitial renal fibrosis in young women: association with slimming regimen including Chinese herbs. Lancet 341:387–391

    Article  CAS  PubMed  Google Scholar 

  17. Baudoux TE, Pozdzik AA, Arlt VM, De Prez EG, Antoine MH, Quellard N et al (2013) Probenecid prevents acute tubular necrosis in a mouse model of aristolochic acid nephropathy. Kidney Int 82:1105–1113

    Article  Google Scholar 

  18. Qi X, Cai Y, Gong L, Liu L, Chen F, Xiao Y et al (2007) Role of mitochondrial permeability transition in human renal tubular epithelial cell death induced by aristolochic acid. Toxicol Appl Pharmacol 222:105–110

    Article  CAS  PubMed  Google Scholar 

  19. Hsin YH, Cheng CH, Tzen JT, Wu MJ, Shu KH, Chen HC (2006) Effect of aristolochic acid on intracellular calcium concentration and its links with apoptosis in renal tubular cells. Apoptosis 11:2167–2177

    Article  CAS  PubMed  Google Scholar 

  20. Zhu S, Wang Y, Jin J, Guan C, Li M, Xi C et al (2012) Endoplasmic reticulum stress mediates aristolochic acid I-induced apoptosis in human renal proximal tubular epithelial cells. Toxicol In Vitro 26:663–671

    Article  CAS  PubMed  Google Scholar 

  21. Matsui K, Kamijo-Ikemorif A, Sugaya T, Yasuda T, Kimura K (2011) Renal liver-type fatty acid binding protein (L-FABP) attenuates acute kidney injury in aristolochic acid nephrotoxicity. Am J Pathol 178:1021–1032

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. He Z, Lu L, Altmann C, Hoke TS, Ljubanovic D, Jani A et al (2008) Interleukin-18 binding protein transgenic mice are protected against ischemic acute kidney injury. Am J Physiol Renal Physiol 295:F1414–F1421

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S et al (2006) Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26:9220–9231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Graef M, Nunnari J (2011) Mitochondria regulate autophagy by conserved signalling pathways. EMBO J 30:2101–2114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Zou H, Li Y, Liu X, Wang X (1999) An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 274:11549–11556

    Article  CAS  PubMed  Google Scholar 

  26. Jing CH, Wang L, Liu PP, Wu C, Ruan D, Chen G (2012) Autophagy activation is associated with neuroprotection against apoptosis via a mitochondrial pathway in a rat model of subarachnoid hemorrhage. Neuroscience 213:144–153

    Article  CAS  PubMed  Google Scholar 

  27. Shen S, Kepp O, Michaud M, Martins I, Minoux H, Métivier D et al (2011) Association and dissociation of autophagy, apoptosis and necrosis by systematic chemical study. Oncogene 30:4544–4556

    Article  CAS  PubMed  Google Scholar 

  28. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV et al (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ 19:107–120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Yang CC, Wu CT, Chen LP, Hung KY, Liu SH, Chiang CK (2013) Autophagy induction promotes aristolochic acid-I-induced renal injury in vivo and in vitro. Toxicology 312:63–73

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Chinese National Natural Science Research Grants to Prof. Xiao Yang (Grant numbers: 81073138) and postdoctoral fellow Youjia Zeng (Grant numbers: 81202671), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Y., Li, S., Wu, J. et al. Autophagy inhibitors promoted aristolochic acid I induced renal tubular epithelial cell apoptosis via mitochondrial pathway but alleviated nonapoptotic cell death in mouse acute aritolochic acid nephropathy model. Apoptosis 19, 1215–1224 (2014). https://doi.org/10.1007/s10495-014-0996-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-014-0996-x

Keywords

Navigation