Skip to main content
Log in

Suppression of soluble adenylyl cyclase protects smooth muscle cells against oxidative stress-induced apoptosis

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Apoptosis of vascular smooth muscle cells (VSMC) significantly contributes to the instability of advanced atherosclerotic plaques. Oxygen radicals are an important cause for VSMC death. However, the precise mechanism of oxidative stress-induced VSMC apoptosis is still poorly understood. Here, we aimed to analyse the role of soluble adenylyl cylclase (sAC). VSMC derived from rat aorta were treated with either H2O2 (300 µmol/L) or DMNQ (30 µmol/L) for 6 h. Oxidative stress-induced apoptosis was prevented either by treatment with 30 µmol/L KH7 (a specific inhibitor of sAC) or by stable sAC-knockdown (shRNA-transfection). A similar effect was found after inhibition of protein kinase A (PKA). Suppression of the sAC/PKA-axis led to a significant increase in phosphorylation of the p38 mitogen-activated protein kinase under oxidative stress accompanied by a p38-dependent phosphorylation/inactivation of the pro-apoptotic Bcl-2-family protein Bad. Pharmacological inhibition of p38 reversed these effects of sAC knockdown on apoptosis and Bad phosphorylation, suggesting p38 as a link between sAC and apoptosis. Analysis of the protein phosphatases 1 and 2A activities revealed an activation of phosphatase 1, but not phosphatase 2A, under oxidative stress in a sAC/PKA-dependent manner and its role in controlling the p38 phosphorylation. Inhibition of protein phosphatase 1, but not 2A, prevented the pro-apoptotic effect of oxidative stress. In conclusion, sAC/PKA-signaling plays a key role in the oxidative stress-induced apoptosis of VSMC. The cellular mechanism consists of the sAC-promoted and protein phosphatase 1-mediated suppression of p38 phosphorylation resulting to activation of the mitochondrial pathway of apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DCF:

2′,7′-dichlorofluorescein

DMNQ:

2,3-dimethoxy-1,4-naphthoquinone

ERK1/2:

Extracellular signal-regulated kinases1/2

JNK:

c-Jun N-terminal kinases

LDH:

Lactate dehydrogenase

MAPK:

Mitogen-activated protein kinases

NAC:

N-acetyl-l-cysteine

OA:

Okadaic acid

PKA:

Protein kinase A

PP1:

Protein phosphatase 1

PP2A:

Protein phosphatase 2A

ROS:

Reactive oxygen species

Rp-cAMPS:

Rp-adenosine 3′,5′-cyclic monophosphorothioate

sAC:

Soluble adenylyl cyclase

tmAC:

Transmembrane adenylyl cyclases

TUNEL:

Terminal deoxynucleotidyl transferase dUTP nick end labeling

VSMC:

Vascular smooth muscle cells

References

  1. Bauriedel G, Hutter R, Welsch U, Bach R, Sievert H, Luderitz B (1999) Role of smooth muscle cell death in advanced coronary primary lesions: implications for plaque instability. Cardiovasc Res 41:480–488

    Article  CAS  PubMed  Google Scholar 

  2. Clarke M, Bennett M (2006) Defining the role of vascular smooth muscle cell apoptosis in atherosclerosis. Cell Cycle 5:2329–2331

    Article  CAS  PubMed  Google Scholar 

  3. Lyon CA, Johnson JL, Williams H, Sala-Newby GB, George SJ (2009) Soluble N-cadherin overexpression reduces features of atherosclerotic plaque instability. Arterioscler Thromb Vasc Biol 29:195–201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Littlewood TD, Bennett MR (2003) Apoptotic cell death in atherosclerosis. Curr Opin Lipidol 14:469–475

    Article  CAS  PubMed  Google Scholar 

  5. Korshunov VA, Berk BC (2008) Smooth muscle apoptosis and vascular remodeling. Curr Opin Hematol 15:250–254

    Article  PubMed  Google Scholar 

  6. Chen Y, Cann MJ, Litvin TN, Iourgenko V, Sinclair ML, Levin LR et al (2000) Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 289:625–628

    Article  CAS  PubMed  Google Scholar 

  7. Zippin JH, Chen Y, Nahirney P, Kamenetsky M, Wuttke MS, Fischman DA et al (2003) Compartmentalization of bicarbonate-sensitive adenylyl cyclase in distinct signaling microdomains. FASEB J 17:82–84

    CAS  PubMed  Google Scholar 

  8. Appukuttan A, Kasseckert SA, Micoogullari M, Flacke JP, Kumar S, Woste A et al (2012) Type 10 adenylyl cyclase mediates mitochondrial Bax translocation and apoptosis of adult rat cardiomyocytes under simulated ischaemia/reperfusion. Cardiovasc Res 93:340–349

    Article  CAS  PubMed  Google Scholar 

  9. Kumar S, Kostin S, Flacke JP, Reusch HP, Ladilov Y (2009) Soluble adenylyl cyclase controls mitochondria-dependent apoptosis in coronary endothelial cells. J Biol Chem 284:14760–14768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Azumi H, Inoue N, Ohashi Y, Terashima M, Mori T, Fujita H et al (2002) Superoxide generation in directional coronary atherectomy specimens of patients with angina pectoris: important role of NAD(P)H oxidase. Arterioscler Thromb Vasc Biol 22:1838–1844

    Article  CAS  PubMed  Google Scholar 

  11. Hess KC, Jones BH, Marquez B, Chen Y, Ord TS, Kamenetsky M et al (2005) The “soluble” adenylyl cyclase in sperm mediates multiple signaling events required for fertilization. Dev Cell 9:249–259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Wu KY, Zippin JH, Huron DR, Kamenetsky M, Hengst U, Buck J et al (2006) Soluble adenylyl cyclase is required for netrin-1 signaling in nerve growth cones. Nat Neurosci 9:1257–1264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Gustafsson AB, Gottlieb RA (2008) Heart mitochondria: gates of life and death. Cardiovasc Res 77:334–343

    Article  CAS  PubMed  Google Scholar 

  14. Ohi N, Nishikawa Y, Tokairin T, Yamamoto Y, Doi Y, Omori Y (2006) Maintenance of bad phosphorylation prevents apoptosis of rat hepatic sinusoidal endothelial cells in vitro and in vivo. Am J Pathol 168:1097–1106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Schonthal AH (1998) Role of PP2A in intracellular signal transduction pathways. Front Biosci 3:D1262–D1273

    CAS  PubMed  Google Scholar 

  16. Knapp J, Bokník P, Lüss I, Huke S, Linck B, Lüss H et al (1999) The protein phosphatase inhibitor cantharidin alters vascular endothelial cell permeability. J Pharmacol Exp Ther 289:1480–1486

    CAS  PubMed  Google Scholar 

  17. Monks TJ, Hanzlik RP, Cohen GM, Ross D, Graham DG (1992) Quinone chemistry and toxicity. Toxicol Appl Pharmacol 112:2–16

    Article  CAS  PubMed  Google Scholar 

  18. Tchivilev I, Madamanchi NR, Vendrov AE, Niu XL, Runge MS (2008) Identification of a protective role for protein phosphatase 1cgamma1 against oxidative stress-induced vascular smooth muscle cell apoptosis. J Biol Chem 283:22193–22205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Zhang L, Insel PA (2004) The pro-apoptotic protein Bim is a convergence point for cAMP/protein kinase A- and glucocorticoid-promoted apoptosis of lymphoid cells. J Biol Chem 279:20858–20865

    Article  CAS  PubMed  Google Scholar 

  20. Kwak HJ, Park KM, Choi HE, Chung KS, Lim HJ, Park HY (2008) PDE4 inhibitor, roflumilast protects cardiomyocytes against NO-induced apoptosis via activation of PKA and Epac dual pathways. Cell Signal 20:803–814

    Article  PubMed  Google Scholar 

  21. Appukuttan A, Kasseckert SA, Kumar S, Reusch HP, Ladilov Y (2013) Oxysterol-induced apoptosis of smooth muscle cells is under the control of a soluble adenylyl cyclase. Cardiovasc Res 99:734–742

    Article  CAS  PubMed  Google Scholar 

  22. Affaitati A, Cardone L, de Cristofaro T, Carlucci A, Ginsberg MD, Varrone S et al (2003) Essential role of A-kinase anchor protein 121 for cAMP signaling to mitochondria. J Biol Chem 278:4286–4294

    Article  CAS  PubMed  Google Scholar 

  23. Papa S, Sardanelli AM, Scacco S, Technikova-Dobrova Z (1999) cAMP-dependent protein kinase and phosphoproteins in mammalian mitochondria. An extension of the cAMP-mediated intracellular signal transduction. FEBS Lett 444:245–249

    Article  CAS  PubMed  Google Scholar 

  24. Cieslak D, Lazou A (2007) Regulation of BAD protein by PKA, PKCdelta and phosphatases in adult rat cardiac myocytes subjected to oxidative stress. Mol Cells 24:224–231

    CAS  PubMed  Google Scholar 

  25. Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME (1999) Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286:1358–1362

    Article  CAS  PubMed  Google Scholar 

  26. Datta SR, Brunet A, Greenberg ME (1999) Cellular survival: a play in three Akts. Genes Dev 13:2905–2927

    Article  CAS  PubMed  Google Scholar 

  27. Harada H, Andersen JS, Mann M, Terada N, Korsmeyer SJ (2001) p70S6 kinase signals cell survival as well as growth, inactivating the pro-apoptotic molecule BAD. Proc Natl Acad Sci USA 98:9666–9670

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Humphrey RG, Sonnenberg-Hirche C, Smith SD, Hu C, Barton A, Sadovsky Y et al (2008) Epidermal growth factor abrogates hypoxia-induced apoptosis in cultured human trophoblasts through phosphorylation of BAD serine 112. Endocrinology 149:2131–2137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Aggen JB, Nairn AC, Chamberlin R (2000) Regulation of protein phosphatase-1. Chem Biol 7:R13–R23

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant LA 1159/7-1 of the Deutsche Forschungsgemeinschaft. S. Kumar was supported by fellowship from Deutsche Gesellschaft für Kardiologie. We also thank Dr. J. Buck (Cornell University, NY) for kindly providing the R21 antibodies and KH7.15. The technical help of G. Scheibel and K. Rezny is gratefully acknowledged.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yury Ladilov.

Additional information

Sanjeev Kumar and Avinash Appukuttan equally contributed to this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 593 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Appukuttan, A., Maghnouj, A. et al. Suppression of soluble adenylyl cyclase protects smooth muscle cells against oxidative stress-induced apoptosis. Apoptosis 19, 1069–1079 (2014). https://doi.org/10.1007/s10495-014-0989-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-014-0989-9

Keywords

Navigation