Skip to main content

Advertisement

Log in

Zipper interacting protein kinase (ZIPK): function and signaling

  • The Universe of DAPK
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Zipper interacting protein kinase (ZIPK), also known as death associated protein kinase 3, is a serine/threonine kinase that mediates variety of cell functions. The major biologic function of ZIPK is considered to be the regulation of apoptosis and smooth muscle contraction. Recently, several other functions of ZIPK have been gradually clarified. In this review article, we summarized the recent findings on ZIPK function and ZIPK-related cell signaling. We propose that ZIPK is a potential future target for the development of pharmaceutical therapy for cancer as well as cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ZIPK:

Zipper interacting protein kinase

DAPK:

Death associated protein kinase

ATF:

Activating transcription factor

CaM:

Calmodulin

DRAK:

DAPK-related apoptosis-inducing protein kinase

STAT:

Signal transducer and activator of transcription

MYPT:

Myosin phosphatase targeting subunit

PAR:

Prostate apoptosis response

LC:

Light chain

MLC:

Myosin LC

TNF:

Tumor necrosis factor

VCAM:

Vascular cell adhesion molecule

ROS:

Reactive oxygen species

SMCs:

Smooth muscle cells

SHR:

Spontaneously hypertensive rats

References

  1. Kawai T, Matsumoto M, Takeda K, Sanjo H, Akira S (1998) ZIP kinase, a novel serine/threonine kinase which mediates apoptosis. Mol Cell Biol 18:1642–1651

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Haystead TA (2005) ZIP kinase, a key regulator of myosin protein phosphatase 1. Cell Signal 17:1313–1322. doi:10.1016/j.cellsig.2005.05.008

    Article  CAS  PubMed  Google Scholar 

  3. Brognard J, Zhang YW, Puto LA, Hunter T (2011) Cancer-associated loss-of-function mutations implicate DAPK3 as a tumor-suppressing kinase. Cancer Res 71:3152–3161. doi:10.1158/0008-5472.CAN-10-3543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Mills JC, Stone NL, Erhardt J, Pittman RN (1998) Apoptotic membrane blebbing is regulated by myosin light chain phosphorylation. J Cell Biol 140:627–636. doi:10.1083/jcb.140.3.627

    Article  CAS  PubMed  Google Scholar 

  5. Sebbagh M, Renvoize C, Hamelin J, Riche N, Bertoglio J, Breard J (2001) Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat Cell Biol 3:346–352. doi:10.1038/35070019

    Article  CAS  PubMed  Google Scholar 

  6. Coleman ML, Sahai EA, Yeo M, Bosch M, Dewar A, Olson MF (2001) Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol 3:339–345. doi:10.1038/35070009

    Article  CAS  PubMed  Google Scholar 

  7. Bialik S, Kimchi A (2006) The death-associated protein kinases: structure, function, and beyond. Annu Rev Biochem 75:189–210. doi:10.1146/annurev.biochem.75.103004.142615

    Article  CAS  PubMed  Google Scholar 

  8. Gozuacik D, Kimchi A (2006) DAPk protein family and cancer. Autophagy 2:74–79. doi:10.4161/auto.2.2.2459

    CAS  PubMed  Google Scholar 

  9. Shohat G, Shani G, Eisenstein M, Kimchi A (2002) The DAP-kinase family of proteins: study of a novel group of calcium-regulated death-promoting kinases. Biochim Biophys Acta 1600:45–50. doi:10.1016/S1570-9639(02)00443-0

    Article  CAS  PubMed  Google Scholar 

  10. Shohat G, Spivak-Kroizman T, Eisenstein M, Kimchi A (2002) The regulation of death-associated protein (DAP) kinase in apoptosis. Eur Cytokine Netw 13:398–400

    CAS  PubMed  Google Scholar 

  11. Graves PR, Winkfield KM, Haystead TA (2005) Regulation of zipper-interacting protein kinase activity in vitro and in vivo by multisite phosphorylation. J Biol Chem 280:9363–9374. doi:10.1074/jbc.M412538200

    Article  CAS  PubMed  Google Scholar 

  12. Weitzel DH, Chambers J, Haystead TA (2011) Phosphorylation-dependent control of ZIPK nuclear import is species specific. Cell Signal 23:297–303. doi:10.1016/j.cellsig.2010.09.016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Hagerty L, Weitzel DH, Chambers J et al (2007) ROCK1 phosphorylates and activates zipper-interacting protein kinase. J Biol Chem 282:4884–4893. doi:10.1074/jbc.M609990200

    Article  CAS  PubMed  Google Scholar 

  14. Kawai T, Akira S, Reed JC (2003) ZIP kinase triggers apoptosis from nuclear PML oncogenic domains. Mol Cell Biol 23:6174–6186. doi:10.1128/MCB.23.17.6174- 6186.2003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Sato N, Kawai T, Sugiyama K et al (2005) Physical and functional interactions between STAT3 and ZIP kinase. Int Immunol 17:1543–1552. doi:10.1093/intimm/dxh331

    Article  CAS  PubMed  Google Scholar 

  16. Shani G, Marash L, Gozuacik D et al (2004) Death-associated protein kinase phosphorylates ZIP kinase, forming a unique kinase hierarchy to activate its cell death functions. Mol Cell Biol 24:8611–8626. doi:10.1128/MCB.24.19.8611- 8626.2004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Endo A, Surks HK, Mochizuki S, Mochizuki N, Mendelsohn ME (2004) Identification and characterization of zipper-interacting protein kinase as the unique vascular smooth muscle myosin phosphatase-associated kinase. J Biol Chem 279:42055–42061. doi:10.1074/jbc.M403676200

    Article  CAS  PubMed  Google Scholar 

  18. Page G, Kogel D, Rangnekar V, Scheidtmann KH (1999) Interaction partners of Dlk/ZIP kinase: co-expression of Dlk/ZIP kinase and Par-4 results in cytoplasmic retention and apoptosis. Oncogene 18:7265–7273. doi:10.1038/sj.onc.1203170

    Article  CAS  PubMed  Google Scholar 

  19. Nehru V, Almeida FN, Aspenstrom P (2013) Interaction of RhoD and ZIP kinase modulates actin filament assembly and focal adhesion dynamics. Biochem Biophys Res Commun 433:163–169. doi:10.1016/j.bbrc.2013.02.046

    Article  CAS  PubMed  Google Scholar 

  20. Murthy KS (2006) Signaling for contraction and relaxation in smooth muscle of the gut. Annu Rev Physiol 68:345–374. doi:10.1146/annurev.physiol.68.040504.094707

    Article  CAS  PubMed  Google Scholar 

  21. Somlyo AP, Somlyo AV (2003) Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 83:1325–1358. doi:10.1152/physrev.0 0023.2003

    CAS  PubMed  Google Scholar 

  22. Vetterkind S, Illenberger S, Kubicek J et al (2005) Binding of Par-4 to the actin cytoskeleton is essential for Par-4/Dlk-mediated apoptosis. Exp Cell Res 305:392–408. doi:10.1016/j.yexcr.2005.01.012

    Article  CAS  PubMed  Google Scholar 

  23. Murata-Hori M, Fukuta Y, Ueda K, Iwasaki T, Hosoya H (2001) HeLa ZIP kinase induces diphosphorylation of myosin II regulatory light chain and reorganization of actin filaments in nonmuscle cells. Oncogene 20:8175–8183. doi:10.1038/sj.onc.1205055

    Article  CAS  PubMed  Google Scholar 

  24. Kogel D, Plottner O, Landsberg G, Christian S, Scheidtmann KH (1998) Cloning and characterization of Dlk, a novel serine/threonine kinase that is tightly associated with chromatin and phosphorylates core histones. Oncogene 17:2645–2654. doi:10.1038/sj.onc.1202204

    Article  CAS  PubMed  Google Scholar 

  25. Kogel D, Reimertz C, Mech P et al (2001) Dlk/ZIP kinase-induced apoptosis in human medulloblastoma cells: requirement of the mitochondrial apoptosis pathway. Br J Cancer 85:1801–1808. doi:10.1054/bjoc 2001.2158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Inbal B, Bialik S, Sabanay I, Shani G, Kimchi A (2002) DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. J Cell Biol 157:455–468. doi:10.1083/jcb.200109094

    Article  CAS  PubMed  Google Scholar 

  27. Tang HW, Wang YB, Wang SL, Wu MH, Lin SY, Chen GC (2011) Atg1-mediated myosin II activation regulates autophagosome formation during starvation-induced autophagy. EMBO J 30:636–651. doi:10.1038/emboj.2010.338

    Article  CAS  PubMed  Google Scholar 

  28. Mallipeddi R, Wessagowit V, South AP et al (2004) Reduced expression of insulin-like growth factor-binding protein-3 (IGFBP-3) in Squamous cell carcinoma complicating recessive dystrophic epidermolysis bullosa. J Invest Dermatol 122:1302–1309. doi:10.1111/j.0022-202X.2004.22525.x

    Article  CAS  PubMed  Google Scholar 

  29. Bi J, Lau SH, Hu L et al (2009) Downregulation of ZIP kinase is associated with tumor invasion, metastasis and poor prognosis in gastric cancer. Int J Cancer 124:1587–1593. doi:10.1002/ijc.24164

    Article  CAS  PubMed  Google Scholar 

  30. Niiro N, Ikebe M (2001) Zipper-interacting protein kinase induces Ca(2+)-free smooth muscle contraction via myosin light chain phosphorylation. J Biol Chem 276:29567–29574. doi:10.1074/jbc.M102753200

    Article  CAS  PubMed  Google Scholar 

  31. Borman MA, MacDonald JA, Haystead TA (2007) Staurosporine inhibition of zipper-interacting protein kinase contractile effects in gastrointestinal smooth muscle. Biochem Cell Biol 85:111–120. doi:10.1139/o06-209

    Article  CAS  PubMed  Google Scholar 

  32. Ihara E, MacDonald JA (2007) The regulation of smooth muscle contractility by zipper-interacting protein kinase. Can J Physiol Pharmacol 85:79–87. doi:10.1139/y06-103

    Article  CAS  PubMed  Google Scholar 

  33. Chuang YT, Lin YC, Lin KH et al (2010) Tumor suppressor death-associated protein kinase is required for full IL-1beta production. Blood 117:960–970. doi:10.1182/blood-2010-08-303115

    Article  PubMed  Google Scholar 

  34. Mukhopadhyay R, Ray PS, Arif A, Brady AK, Kinter M, Fox PL (2008) DAPK-ZIPK-L13a axis constitutes a negative-feedback module regulating inflammatory gene expression. Mol Cell 32:371–382. doi:10.1016/j.molcel.2008.09.019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Usui T, Okada M, Hara Y, Yamawaki H (2012) Death-associated protein kinase 3 mediates vascular inflammation and development of hypertension in spontaneously hypertensive rats. Hypertension 60:1031–1039. doi:10.1161/HYPERTENSIONAHA.112.200337

    Article  CAS  PubMed  Google Scholar 

  36. Cho YE, Ahn DS, Morgan KG, Lee YH (2011) Enhanced contractility and myosin phosphorylation induced by Ca(2+)-independent MLCK activity in hypertensive rats. Cardiovasc Res 91:162–170. doi:10.1093/cvr/cvr043

    Article  CAS  PubMed  Google Scholar 

  37. Usui T, Okada M, Hara Y, Yamawaki H (2011) Exploring calmodulin-related proteins, which mediate development of hypertension, in vascular tissues of spontaneous hypertensive rats. Biochem Biophys Res Commun 405:47–51. doi:10.1016/j.bbrc.2010.12.120

    Article  CAS  PubMed  Google Scholar 

  38. Chang AN, Chen G, Gerard RD, Kamm KE, Stull JT (2010) Cardiac myosin is a substrate for zipper-interacting protein kinase (ZIPK). J Biol Chem 285:5122–5126. doi:10.1074/jbc.C109.076489

    Article  CAS  PubMed  Google Scholar 

  39. Chadin AV, Belokurova MV, Stepanova OV, Ivanova MV, Shirinskii VP (2006) Content of myosin-activating protein kinases in myocardium of patients with dilated cardiomyopathy and in the animal heart. Biofizika 51:924–928

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported in part by a Grant for Scientific Research from the Japan Society for the Promotion of Science.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideyuki Yamawaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Usui, T., Okada, M. & Yamawaki, H. Zipper interacting protein kinase (ZIPK): function and signaling. Apoptosis 19, 387–391 (2014). https://doi.org/10.1007/s10495-013-0934-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0934-3

Keywords

Navigation