Skip to main content
Log in

Apoptosis in differentiating C2C12 muscle cells selectively targets Bcl-2-deficient myotubes

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Muscle cell apoptosis accompanies normal muscle development and regeneration, as well as degenerative diseases and aging. C2C12 murine myoblast cells represent a common model to study muscle differentiation. Though it was already shown that myogenic differentiation of C2C12 cells is accompanied by enhanced apoptosis in a fraction of cells, either the cell population sensitive to apoptosis or regulatory mechanisms for the apoptotic response are unclear so far. In the current study we characterize apoptotic phenotypes of different types of C2C12 cells at all stages of differentiation, and report here that myotubes of differentiated C2C12 cells with low levels of anti-apoptotic Bcl-2 expression are particularly vulnerable to apoptosis even though they are displaying low levels of pro-apoptotic proteins Bax, Bak and Bad. In contrast, reserve cells exhibit higher levels of Bcl-2 and high resistance to apoptosis. The transfection of proliferating myoblasts with Bcl-2 prior to differentiation did not protect against spontaneous apoptosis accompanying differentiation of C2C12 cells but led to Bcl-2 overexpression in myotubes and to significant protection from apoptotic cell loss caused by exposure to hydrogen peroxide. Overall, our data advocate for a Bcl-2-dependent mechanism of apoptosis in differentiated muscle cells. However, downstream processes for spontaneous and hydrogen peroxide induced apoptosis are not completely similar. Apoptosis in differentiating myoblasts and myotubes is regulated not through interaction of Bcl-2 with pro-apoptotic Bcl-2 family proteins such as Bax, Bak, and Bad.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

DM:

Differentiation medium

ER:

Endoplasmic reticulum

GM:

Growing medium

TG:

Thapsigargin

TIC:

Total ion current

References

  1. Matsuda R, Nishikawa A, Tanaka H (1995) Visualization of dystrophic muscle fibers in mdx mouse by vital staining with Evans blue: evidence of apoptosis in dystrophin-deficient muscle. J Biochem 118(5):959–964

    Article  CAS  PubMed  Google Scholar 

  2. McClearn D, Medville R, Noden D (1995) Muscle cell death during the development of head and neck muscles in the chick embryo. Dev Dyn 202(4):365–377

    Article  CAS  PubMed  Google Scholar 

  3. Wang J, Walsh K (1996) Resistance to apoptosis conferred by Cdk inhibitors during myocyte differentiation. Science 273(5273):359–361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Dominov JA, Kravetz AJ, Ardelt M, Kostek CA, Beermann ML, Miller JB (2005) Muscle-specific BCL2 expression ameliorates muscle disease in laminin {alpha}2-deficient, but not in dystrophin-deficient, mice. Hum Mol Genet 14(8):1029–1040

    Article  CAS  PubMed  Google Scholar 

  5. Baker DJ, Hepple RT (2006) Elevated caspase and AIF gene expression correlate with progression of sarcopenia during aging in male F344BN rats. Exp Gerontol 41(11):1149–1156

    Article  CAS  PubMed  Google Scholar 

  6. Bejma J, Ji LL (1999) Aging and acute exercise enhance free radical generation in rat skeletal muscle. J Appl Physiol 87(1):465–470

    CAS  PubMed  Google Scholar 

  7. Alway SE, Degens H, Krishnamurthy G, Chaudhrai A (2003) Denervation stimulates apoptosis but not Id2 expression in hindlimb muscles of aged rats. J Gerontol A 58(8):687–697

    Article  Google Scholar 

  8. Cortopassi GA, Wong A (1999) Mitochondria in organismal aging and degeneration. Biochim Biophys Acta 1410(2):183–193

    Article  CAS  PubMed  Google Scholar 

  9. Chabi B, Ljubicic V, Menzies KJ, Huang JH, Saleem A, Hood DA (2008) Mitochondrial function and apoptotic susceptibility in aging skeletal muscle. Aging Cell 7(1):2–12

    Article  CAS  PubMed  Google Scholar 

  10. Dirks AJ, Leeuwenburgh C (2005) The role of apoptosis in age-related skeletal muscle atrophy. Sports Med 35(6):473–483

    Article  PubMed  Google Scholar 

  11. Whitman SA, Wacker MJ, Richmond SR, Godard MP (2005) Contributions of the ubiquitin-proteasome pathway and apoptosis to human skeletal muscle wasting with age. Pflugers Arch 450(6):437–446

    Article  CAS  PubMed  Google Scholar 

  12. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281(5381):1312–1316

    Article  CAS  PubMed  Google Scholar 

  13. Murray TV, McMahon JM, Howley BA, Stanley A, Ritter T, Mohr A, Zwacka R, Fearnhead HO (2008) A non-apoptotic role for caspase-9 in muscle differentiation. J Cell Sci 121(Pt 22):3786–3793

    Article  CAS  PubMed  Google Scholar 

  14. Huppertz B, Tews DS, Kaufmann P (2001) Apoptosis and syncytial fusion in human placental trophoblast and skeletal muscle. Int Rev Cytol 205:215–253

    CAS  PubMed  Google Scholar 

  15. Nakanishi K, Sudo T, Morishima N (2005) Endoplasmic reticulum stress signaling transmitted by ATF6 mediates apoptosis during muscle development. J Cell Biol 169(4):555–560

    Article  CAS  PubMed  Google Scholar 

  16. Nakanishi K, Dohmae N, Morishima N (2007) Endoplasmic reticulum stress increases myofiber formation in vitro. FASEB J 21(11):2994–3003

    Article  PubMed  Google Scholar 

  17. Davies JE, Rubinsztein DC (2011) Over-expression of BCL2 rescues muscle weakness in a mouse model of oculopharyngeal muscular dystrophy. Hum Mol Genet 20(6):1154–1163

    Article  CAS  PubMed  Google Scholar 

  18. Siu PM, Bryner RW, Martyn JK, Alway SE (2004) Apoptotic adaptations from exercise training in skeletal and cardiac muscles. FASEB J 18(10):1150–1152

    CAS  PubMed  Google Scholar 

  19. Jejurikar SS, Henkelman EA, Cederna PS, Marcelo CL, Urbanchek MG, Kuzon WM Jr (2006) Aging increases the susceptibility of skeletal muscle derived satellite cells to apoptosis. Exp Gerontol 41(9):828–836

    Article  CAS  PubMed  Google Scholar 

  20. Siu PM, Wang Y, Alway SE (2009) Apoptotic signaling induced by H2O2-mediated oxidative stress in differentiated C2C12 myotubes. Life Sci 84(13–14):468–481

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275(5303):1132–1136

    Article  CAS  PubMed  Google Scholar 

  22. Gross A, McDonnell JM, Korsmeyer SJ (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13(15):1899–1911

    Article  CAS  PubMed  Google Scholar 

  23. Ma TS, Mann DL, Lee JH, Gallinghouse G (1999) SR compartment calcium and cell apoptosis in SERCA overexpression. Cell Calcium 26(1–2):25–36

    Article  CAS  PubMed  Google Scholar 

  24. Patterson RL, Boehning D, Snyder SH (2004) Inositol-1,4,5-trisphosphate receptors as signal integrators. Annu Rev Biochem 73:437–465

    Article  CAS  PubMed  Google Scholar 

  25. Hajnóczky G, Davies E, Madesh M (2003) Calcium signaling and apoptosis. Biochem Biophys Res Commun 304(3):445–454

    Article  PubMed  Google Scholar 

  26. Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R (2008) Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene 27(50):6407–6418

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Rodriguez D, Rojas-Rivera D (1813) Hetz C (2011) Integrating stress signals at the endoplasmic reticulum: the Bcl-2 protein family rheostat. Biochim Biophys Acta 4:564–574

    Google Scholar 

  28. Gailly P (2002) New aspects of calcium signaling in skeletal muscle cells: implications in Duchenne muscular dystrophy. Biochim Biophys Acta 1600(1–2):38–44

    Article  CAS  PubMed  Google Scholar 

  29. Imbert N, Cognard C, Duport G, Guillou C, Raymond G (1995) Abnormal calcium homeostasis in Duchenne muscular dystrophy myotubes contracting in vitro. Cell Calcium 18(3):177–186

    Article  CAS  PubMed  Google Scholar 

  30. Bianchi K, Rimessi A, Prandini A, Szabadkai G, Rizzuto R (2004) Calcium and mitochondria: mechanisms and functions of a troubled relationship. Biochim Biophys Acta 1742(1–3):119–131

    Article  CAS  PubMed  Google Scholar 

  31. Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA, Pozzan T (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280(5370):1763–1766

    Article  CAS  PubMed  Google Scholar 

  32. Basset O, Boittin FX, Cognard C, Constantin B, Ruegg UT (2006) Bcl-2 overexpression prevents calcium overload and subsequent apoptosis in dystrophic myotubes. Biochem J 395(2):267–276

    Article  CAS  PubMed  Google Scholar 

  33. Dremina ES, Sharov VS, Kumar K, Zaidi A, Michaelis EK, Schöneich C (2004) Anti-apoptotic protein Bcl-2 interacts with and destabilizes the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA). Biochem J 383((Pt2)):361–370

    CAS  PubMed  Google Scholar 

  34. Dremina ES, Sharov VS, Schöneich C (2006) Displacement of SERCA from SR lipid caveolae-related domains by Bcl-2: a possible mechanism for SERCA inactivation. Biochemistry 45(1):175–184

    Article  CAS  PubMed  Google Scholar 

  35. Dremina ES, Sharov VS, Schöneich C (2012) Heat shock proteins attenuate SERCA inactivation by the anti-apoptotic protein Bcl-2: possible implications for the ER Ca2+ mediated apoptosis. Biochem J 444(1):127–139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Dominov JA, Dunn JJ, Miller JB (1998) Bcl-2 expression identifies an early stage of myogenesis and promotes clonal expansion of muscle cells. J Cell Biol 1429(2):537–544

    Article  Google Scholar 

  37. Dominov JA, Houlihan-Kawamoto CA, Swap CJ, Miller JB (2001) Pro- and anti-apoptotic members of the Bcl-2 family in skeletal muscle: a distinct role for Bcl-2 in later stages of myogenesis. Dev Dyn 220(1):18–26

    Article  CAS  PubMed  Google Scholar 

  38. Kitzmann M, Carnac G, Vandromme M, Primig M, Lamb NJ, Fernandez A (1998) The muscle regulatory factors MyoD and myf-5 undergo distinct cell cycle-specific expression in muscle cells. J Cell Biol 142(6):1447–1459

    Article  CAS  PubMed  Google Scholar 

  39. Dally S, Bredoux R, Corvazier E, Andersen JP, Clausen JD, Dode L, Fanchaouy M, Gelebart P, Monceau V, Del Monte F, Gwathmey JK, Hajjar R, Chaabane C, Bobe R, Raies A, Enouf J (2006) Ca2+ -ATPases in non-failing and failing heart: evidence for a novel cardiac sarco/endoplasmic reticulum Ca2+ -ATPase 2 isoform (SERCA2c). Biochem J 395(2):249–258

    Article  CAS  PubMed  Google Scholar 

  40. Olsen JV, Mann M (2004) Improved peptide identification in proteomics by two consecutive stages of mass spectrometric fragmentation. Proc Natl Acad Sci USA 101(37):13417–13422

    Article  CAS  PubMed  Google Scholar 

  41. Zhu W, Smith JW, Huang CM (2010) Mass spectrometry-based label-free quantitative proteomics. J Biomed Biotechnol 2010:840518

    PubMed Central  PubMed  Google Scholar 

  42. Yang X, Turke AB, Qi J, Song Y, Rexer BN, Miller TW, Jänne PA, Arteaga CL, Cantley LC, Engelman JA, Asara JM (2011) Using tandem mass spectrometry in targeted mode to identify activators of class IA PI3K in cancer. Cancer Res 71(18):5965–5975

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Stuelsatz P, Pouzoulet F, Lamarre Y, Dargelos E, Poussard S, Leibovitch S, Cottin P, Veschambre P (2010) Down-regulation of MyoD by calpain 3 promotes generation of reserve cells in C2C12 myoblasts. J Biol Chem 285(17):12670–12683

    Article  CAS  PubMed  Google Scholar 

  44. Gnocchi VF, White RB, Ono Y, Ellis JA, Zammit PS (2009) Further characterisation of the molecular signature of quiescent and activated mouse muscle satellite cells. PLoS One 4:e5205

    Article  PubMed Central  PubMed  Google Scholar 

  45. Ver Heyen M, Reed TD, Blough RI, Baker DL, Zilberman A, Loukianov E, Van Baelen K, Raeymaekers L, Periasamy M, Wuytack F (2000) Structure and organization of the mouse Atp2a2 gene encoding the sarco(endo)plasmic reticulum Ca2+ -ATPase 2 (SERCA2) isoforms. Mamm Genome 11(2):159–163

    Article  CAS  Google Scholar 

  46. Arai M, Otsu K, MacLennan DH, Periasamy M (1992) Regulation of sarcoplasmic reticulum gene expression during cardiac and skeletal muscle development. Am J Physiol Cell Physiol 262((3Pt1)):C614–C620

    CAS  Google Scholar 

  47. Dally S, Corvazier E, Bredoux R, Bobe R, Enouf J (2010) Multiple and diverse coexpression, location, and regulation of additional SERCA2 and SERCA3 isoforms in nonfailing and failing human heart. J Mol Cell Cardiol 48(4):633–644

    Article  CAS  PubMed  Google Scholar 

  48. Dremina ES, Sharov VS, Davies MJ, Schöneich C (2007) Oxidation and inactivation of SERCA by selective reaction of cysteine residues with amino acid peroxides. Chem Res Toxicol 20(10):1462–1469

    Article  CAS  PubMed  Google Scholar 

  49. Ho AT, Li QH, Hakem R, Mak TW, Zacksenhaus E (2004) Coupling of caspase-9 to Apaf1 in response to loss of pRb or cytotoxic drugs is cell-type-specific. EMBO J 23(2):460–472

    Article  CAS  PubMed  Google Scholar 

  50. Kamradt MC, Chen F, Sam S, Cryns VL (2002) The small heat shock protein alpha B-crystallin negatively regulates apoptosis during myogenic differentiation by inhibiting caspase-3 activation. J Biol Chem 277(41):38731–38736

    Article  CAS  PubMed  Google Scholar 

  51. Zhang K, Sha J, Harter ML (2010) Activation of Cdc6 by MyoD is associated with the expansion of quiescent myogenic satellite cells. J Cell Biol 188(1):39–48

    Article  CAS  PubMed  Google Scholar 

  52. Tapscott SJ (2005) The circuitry of a master switch: Myod and the regulation of skeletal muscle gene transcription. Development 132(12):2685–2695

    Article  CAS  PubMed  Google Scholar 

  53. Hirai H, Verma M, Watanabe S, Tastad C, Asakura Y, Asakura A (2010) MyoD regulates apoptosis of myoblasts through microRNA-mediated down-regulation of Pax3. J Cell Biol 191(2):347–365

    Article  CAS  PubMed  Google Scholar 

  54. Sabourin LA, Girgis-Gabardo A, Seale P, Asakura A, Rudnicki MA (1999) Reduced differentiation potential of primary MyoD−/− myogenic cells derived from adult skeletal muscle. J Cell Biol 144(4):631–643

    Article  CAS  PubMed  Google Scholar 

  55. Yablonka-Reuveni Z, Rudnicki MA, Rivera AJ, Primig M, Anderson JE, Natanson P (1999) The transition from proliferation to differentiation is delayed in satellite cells from mice lacking MyoD. Dev Biol 210(2):440–455

    Article  CAS  PubMed  Google Scholar 

  56. Asakura A, Hirai H, Kablar B, Morita S, Ishibashi J, Piras BA, Christ AJ, Verma M, Vineretsky KA, Rudnicki MA (2007) Increased survival of muscle stem cells lacking the MyoD gene after transplantation into regenerating skeletal muscle. Proc Natl Acad Sci USA 104(42):16552–16557

    Article  CAS  PubMed  Google Scholar 

  57. Distelhorst CW, Bootman MD (2011) Bcl-2 interaction with the inositol 1,4,5-trisphosphate receptor: role in Ca(2+) signaling and disease. Cell Calcium 50(3):234–241

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the NIH (P01AG012993). The authors gratefully acknowledge Drs. J. Enouf and R. Bobe (Inserm, Hopital Lariboisiere, Paris, France) for the gift of anti-SERCA2B antibodies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Schöneich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schöneich, C., Dremina, E., Galeva, N. et al. Apoptosis in differentiating C2C12 muscle cells selectively targets Bcl-2-deficient myotubes. Apoptosis 19, 42–57 (2014). https://doi.org/10.1007/s10495-013-0922-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0922-7

Keywords

Navigation