Skip to main content

Advertisement

Log in

Green tea catechins: a fresh flavor to anticancer therapy

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Green tea catechins have been extensively studied for their cancer preventive effects. Accumulating evidence has shown that green tea catechins, like (−)-epigallocatechin-3-gallate, have strong anti-oxidant activity and affect several signal transduction pathways relevant to cancer development. Here, we review the biological properties of green tea catechins and the molecular mechanisms of their anticancer effects, including the suppression of cancer cell proliferation, induction of apoptosis, and inhibition of tumor metastasis and angiogenesis. We summarize the efficacy of a single catechin and the synergetic effects of multiple catechins. We also discuss the enhanced anticancer effects of green tea catechins when they are combined with anticancer drugs. The information present in this review might promote the development of strategy for the co-administration of green tea catechins with other anticancer drugs to increase the potency of currently available anticancer medicine. This new strategy should in turn lower the cytotoxicity and cost of anticancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACE:

Angiotensin-converting enzyme

AP-1:

Activator protein-1

Apaf-1:

Apoptosis protease activating factor-1

ARE:

Antioxidant response elements

Bad:

Bcl2 antagonist of cell death

Bax:

Bcl-2 associated x protein

Bcl-2:

B cell lymphoma-2

Bid:

BH3-interacting domain death agonist

CDKs:

Cyclin-dependent kinases

CIs:

Confidence intervals

CLL:

Chronic lymphocytic leukemia

COX-2:

Cyclooxygenase-2

CSCs:

Cancer stem cells

Cyt-c:

Cytochrome-c

EC:

(−)-Epicatechin

ECG:

(−)-Epicatechin-3-gallate

EGC:

(−)-Epigallocatechin

EGCG:

(−)-Epigallocatechin-3-gallate

ERK:

Extracellular-regulated protein kinase

FADD:

Fas-associated protein with death domain

FOXO:

Forkhead box protein O

GCG:

(−)-Gallocatechin gallate

GST:

Glutathione S-transferases

HBP1:

HMG box-containing protein 1

HGF/SF:

Hepatocyte growth factor/scatter factor

Htert:

Human telomerase reverse transcriptase

IAP:

Inhibitor of apoptosis proteins

IGF:

Insulin-like growth factor

IGFBP3:

Insulin-like growth factor binding protein 3

IKK:

Inhibitor of nuclear factor kappa-B kinase

IL-6:

Interleukin 6

IL-8:

Interleukin 8

iNOS:

Inducible nitric oxide synthase

JNK:

c-jun N-terminal kinase

MAPK:

Mitogen activated protein kinases

mdm2:

Murine double mimute 2

MEK3:

Mitogen-activated protein kinase 3

MEKK1:

Mitogen-activated protein kinase kinase 1

MMPs:

Matrix metallo proteinases

MT1-MMP:

Membrane-type 1 matrix metalloproteinase

NF-κB:

Nuclear factor-κB

nHDFs:

Neonatal human dermal fibroblasts

Nrf2:

Nuclear factor erythroid 2-related factor

OR:

Odds ratio

PCNA:

Proliferating cell nuclear antigen

PI3K:

Phosphoinositide 3-kinases

Poly E:

Polyphenon E

PRAP:

Poly(ADP-ribose) polymerase

ROS:

Reactive oxygen species

RTK:

Receptor tyrosine kinases

RR:

Relative risk

SOD:

Superoxide dismutase

Stat3:

Signal transducer and activator of transcription 3

TCOP:

Tea catechin oxy-polymers

TIMP:

Tissue inhibitor of metalloproteinase

TNF-α:

Tumor necrosis factor α

TRAIL:

TNF-related apoptosis-inducing ligand

VEGF:

Vascular endothelial growth factor

uPA:

Urokinase-type plasminogen activator

XIAP:

X-linked inhibitor of apoptosis protein

References

  1. Sang S, Lambert JD, Ho C-T, Yang CS (2011) The chemistry and biotransformation of tea constituents. Pharmacol Res 64:87–99

    CAS  PubMed  Google Scholar 

  2. Yang CS, Wang X, Lu G, Picinich SC (2009) Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat Rev Cancer 9:429–439

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Feng WY (2006) Metabolism of green tea catechins: an overview. Curr Drug Metab 7:755–809

    CAS  PubMed  Google Scholar 

  4. Cao Y, Cao R (1999) Angiogenesis inhibited by drinking tea. Nature 398:381

    CAS  PubMed  Google Scholar 

  5. Singh BN, Shankar S, Srivastava RK (2011) Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol 82:1807–1821

    CAS  PubMed  Google Scholar 

  6. Yang CS, Lambert JD, Ju J, Lu G, Sang S (2007) Tea and cancer prevention: molecular mechanisms and human relevance. Toxicol Appl Pharm 224:265–273

    CAS  Google Scholar 

  7. Higdon JV, Frei B (2003) Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Food Sci 43(1):89–143

    CAS  Google Scholar 

  8. Suganuma M, Okabe S, Kai Y, Sueoka N, Sueoka E, Fujiki H (1999) Synergistic effects of (−)-epigallocatechin gallate with (−)-epicatechin, sulindac, or tamoxifen on cancer-preventive activity in the human lung cancer cell line PC-9. Cancer Res 59:44–47

    CAS  PubMed  Google Scholar 

  9. Hu B, Wang L, Zhou B, Zhang X, Sun Y, Ye H et al (2009) Efficient procedure for isolating methylated catechins from green tea and effective simultaneous analysis of ten catechins, three purine alkaloids, and gallic acid in tea by high-performance liquid chromatography with diode array detection. J Chromatogr A 1216:3223–3231

    CAS  PubMed  Google Scholar 

  10. Saha A, Kuzuhara T, Echigo N, Suganuma M, Fujiki H (2010) New role of (−)-epicatechin in enhancing the induction of growth inhibition and apoptosis in human lung cancer cells by curcumin. Cancer Prev Res 3:953–962

    CAS  Google Scholar 

  11. Jung YD, Kim MS, Shin BA, Chay KO, Ahn BW, Liu W et al (2001) EGCG, a major component of green tea, inhibits tumour growth by inhibiting VEGF induction in human colon carcinoma cells. BRIT J Cancer 84:844

    CAS  PubMed  Google Scholar 

  12. Shimizu M, Deguchi A, Lim JT, Moriwaki H, Kopelovich L, Weinstein IB (2005) (−)-Epigallocatechin gallate and polyphenon E inhibit growth and activation of the epidermal growth factor receptor and human epidermal growth factor receptor-2 signaling pathways in human colon cancer cells. Clin Cancer Res 11:2735–2746

    CAS  PubMed  Google Scholar 

  13. Hirose M, Mizoguchi Y, Yaono M, Tanaka H, Yamaguchi T, Shirai T (1997) Effects of green tea catechins on the progression or late promotion stage of mammary gland carcinogenesis in female Sprague-Dawley rats pretreated with 7, 12-dimethylbenz (<i>a</i>) anthracene. Cancer Lett 112:141–147

    CAS  PubMed  Google Scholar 

  14. Yan Y, Cook J, McQuillan J, Zhang G, Hitzman CJ, Wang Y et al (2007) Chemopreventive effect of aerosolized polyphenon E on lung tumorigenesis in A/J mice. Neoplasia 9:401

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Chow HH, Hakim IA, Vining DR, Crowell JA, Ranger-Moore J, Chew WM et al (2005) Effects of dosing condition on the oral bioavailability of green tea catechins after single-dose administration of polyphenon E in healthy individuals. Clin Cancer Res 11:4627–4633

    CAS  PubMed  Google Scholar 

  16. Chen D, Wan SB, Yang H, Yuan J, Chan TH, Dou QP (2011) EGCG, green tea polyphenols and their synthetic analogs and prodrugs for human cancer prevention and treatment. Adv Clin Chem 53:155

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Johnson J, Bailey H, Mukhtar H (2010) Green tea polyphenols for prostate cancer chemoprevention: a translational perspective. Phytomedicine 17:3–13

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Myung SK, Bae WK, Oh SM, Kim Y, Ju W, Sung J et al (2009) Green tea consumption and risk of stomach cancer: a meta-analysis of epidemiologic studies. Int J Cancer 124:670–677

    CAS  PubMed  Google Scholar 

  19. Zheng P, H-m Zheng, X-m Deng (2012) Green tea consumption and risk of esophageal cancer: a meta-analysis of epidemiologic studies. BMC gastroenterol 12:165

    PubMed Central  PubMed  Google Scholar 

  20. Chen Z, Chen Q, Xia H, Lin J (2011) Green tea drinking habits and esophageal cancer in southern China: a case–control study. Asian Pac J Cancer Prev 12:229–233

    PubMed  Google Scholar 

  21. Yuan J-M, Koh W-P, Sun C-L, Lee H-P, Mimi CY (2005) Green tea intake, ACE gene polymorphism and breast cancer risk among Chinese women in Singapore. Carcinogenesis 26:1389–1394

    CAS  PubMed  Google Scholar 

  22. Lin IH, Ho ML, Chen HY, Lee HS, Huang CC, Chu YH et al (2012) Smoking, green tea consumption, genetic polymorphisms in the insulin-like growth factors and lung cancer risk. PLoS ONE 7:e30951

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Kumar N, Shibata D, Helm J, Coppola D, Malafa M (2007) Green tea polyphenols in the prevention of colon cancer. Front Biosci 12:302–309

    Google Scholar 

  24. Chow HH, Cai Y, Hakim IA, Crowell JA, Shahi F, Brooks CA et al (2003) Pharmacokinetics and safety of green tea polyphenols after multiple-dose administration of epigallocatechin gallate and polyphenon E in healthy individuals. Clin Cancer Res 9:3312–3319

    CAS  PubMed  Google Scholar 

  25. Tsao AS, Liu D, Martin J, Tang XM, Lee JJ, El-Naggar AK et al (2009) Phase II randomized, placebo-controlled trial of green tea extract in patients with high-risk oral premalignant lesions. Cancer Prev Res 2:931–941

    CAS  Google Scholar 

  26. Jatoi A, Ellison N, Burch PA, Sloan JA, Dakhil SR, Novotny P et al (2003) A phase II trial of green tea in the treatment of patients with androgen independent metastatic prostate carcinoma. Cancer 97:1442–1446

    CAS  PubMed  Google Scholar 

  27. Luo H, Tang L, Tang M, Billam M, Huang T, Yu J et al (2006) Phase IIa chemoprevention trial of green tea polyphenols in high-risk individuals of liver cancer: modulation of urinary excretion of green tea polyphenols and 8-hydroxydeoxyguanosine. Carcinogenesis 27:262–268

    CAS  PubMed  Google Scholar 

  28. Zhang T, Zhang J, Derreumaux P, Mu Y (2013) Molecular mechanism of the inhibition of EGCG on the Alzheimer’s Aβ1-42 dimer. J Phys Chem B 117:3993–4002

    CAS  PubMed  Google Scholar 

  29. Chen D, Pamu S, Cui Q, Chan TH, Dou QP (2012) Novel epigallocatechin gallate (EGCG) analogs activate AMP-activated protein kinase pathway and target cancer stem cells. Bioorgan Med Chem 20:3031–3037

    CAS  Google Scholar 

  30. Thomasset SC, Berry DP, Garcea G, Marczylo T, Steward WP, Gescher AJ (2007) Dietary polyphenolic phytochemicals—Promising cancer chemopreventive agents in humans? A review of their clinical properties. Int J Cancer 120:451–458

    CAS  PubMed  Google Scholar 

  31. Yang CS, Wang X (2010) Green tea and cancer prevention. Nutr Cancer 62:931–937

    CAS  PubMed  Google Scholar 

  32. Khan N, Afaq F, Saleem M, Ahmad N, Mukhtar H (2006) Targeting multiple signaling pathways by green tea polyphenol (−)-epigallocatechin-3-gallate. Cancer Res 66:2500–2505

    CAS  PubMed  Google Scholar 

  33. Surh Y-J (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3:768–780

    CAS  PubMed  Google Scholar 

  34. Hastak K, Gupta S, Ahmad N, Agarwal MK, Agarwal ML, Mukhtar H (2003) Role of p53 and NF-κB in epigallocatechin-3-gallate-induced apoptosis of LNCaP cells. Oncogene 22:4851–4859

    CAS  PubMed  Google Scholar 

  35. Lambert JD, Elias RJ (2010) The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Arch Biochem Biophys 501:65–72

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Frei B, Higdon JV (2003) Antioxidant activity of tea polyphenols in vivo: evidence from animal studies. J Nutr 133:3275S–3284S

    CAS  PubMed  Google Scholar 

  37. Inami S, Takano M, Yamamoto M, Murakami D, Tajika K, Yodogawa K et al (2007) Tea catechin consumption reduces circulating oxidized low-density lipoprotein. Int Heart J 48:725–732

    CAS  PubMed  Google Scholar 

  38. Yamamoto Y, Gaynor RB (2001) Therapeutic potential of inhibition of the NF-κB pathway in the treatment of inflammation and cancer. J Clin Invest 107:135–142

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Dong Z, W-y Ma, Huang C, Yang CS (1997) Inhibition of tumor promoter-induced activator protein 1 activation and cell transformation by tea polyphenols, (−)-epigallocatechin gallate, and theaflavins. Cancer Res 57:4414–4419

    CAS  PubMed  Google Scholar 

  40. Karin M, Cao Y, Greten FR, Li ZW (2002) NF-κB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2:301–310

    CAS  PubMed  Google Scholar 

  41. Khan SG, Katiyar SK, Agarwal R, Mukhtar H (1992) Enhancement of antioxidant and phase II enzymes by oral feeding of green tea polyphenols in drinking water to SKH-1 hairless mice: possible role in cancer chemoprevention. Cancer Res 52:4050–4052

    CAS  PubMed  Google Scholar 

  42. Reuland DJ, Khademi S, Castle CJ, Irwin DC, McCord JM, Miller BF et al (2013) Upregulation of phase II enzymes through phytochemical activation of Nrf2 protects cardiomyocytes against oxidant stress. Free Radic Bio Med 56:102–111

    CAS  Google Scholar 

  43. Na H-K, Surh Y-J (2008) Modulation of Nrf2-mediated antioxidant and detoxifying enzyme induction by the green tea polyphenol EGCG. Food Chem Toxicol 46:1271–1278

    CAS  PubMed  Google Scholar 

  44. Blagosklonny M (2005) Carcinogenesis, cancer therapy and chemoprevention. Cell Death Differ 12:592–602

    CAS  PubMed  Google Scholar 

  45. Thangapazham RL, Singh AK, Sharma A, Warren J, Gaddipati JP, Maheshwari RK (2007) Green tea polyphenols and its constituent epigallocatechin gallate inhibits proliferation of human breast cancer cells in vitro and in vivo. Cancer Lett 245:232

    CAS  PubMed  Google Scholar 

  46. Ju J, Hong J, Zhou JN, Pan Z, Bose M, Liao J et al (2005) Inhibition of intestinal tumorigenesis in Apcmin/+ mice by (−)-epigallocatechin-3-gallate, the major catechin in green tea. Cancer Res 65:10623–10631

    CAS  PubMed  Google Scholar 

  47. Huh SW, Bae SM, Kim YW, Lee JM, Namkoong SE, Lee IP et al (2004) Anticancer effects of (-)-epigallocatechin-3-gallate on ovarian carcinoma cell lines. Gynecol Oncol 94:760

    CAS  PubMed  Google Scholar 

  48. Stillman B (1996) Cell cycle control of DNA replication. Science 274:1659–1663

    CAS  PubMed  Google Scholar 

  49. Graña X, Reddy EP (1995) Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene 11:211

    PubMed  Google Scholar 

  50. Nigg EA (1995) Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. BioEssays 17:471–480

    CAS  PubMed  Google Scholar 

  51. Massagué J (2004) G1 cell-cycle control and cancer. Nature 432:298–306

    PubMed  Google Scholar 

  52. Kim CH, Moon SK (2005) Epigallocatechin-3-gallate causes the p21/WAF1-mediated G(1)-phase arrest of cell cycle and inhibits matrix metalloproteinase-9 expression in TNF-alpha-induced vascular smooth muscle cells. Arch Biochem Biophys 435:264–272

    CAS  PubMed  Google Scholar 

  53. Peng G, Wargovich MJ, Dixon DA (2006) Anti-proliferative effects of green tea polyphenol EGCG on Ha-Ras-induced transformation of intestinal epithelial cells. Cancer Lett 238:260–270

    CAS  PubMed  Google Scholar 

  54. Tan X, Hu D, Li S, Han Y, Zhang Y, Zhou D (2000) Differences of four catechins in cell cycle arrest and induction of apoptosis in LoVo cells. Cancer Lett 158:1–6

    CAS  PubMed  Google Scholar 

  55. Han DW, Lee MH, Kim HH, Hyon SH, Park JC (2011) Epigallocatechin-3-gallate regulates cell growth, cell cycle and phosphorylated nuclear factor-κB in human dermal fibroblasts. Acta Pharmacol Sin 32:637–646

    CAS  PubMed  Google Scholar 

  56. Downward J (2003) Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 3:11–22

    CAS  PubMed  Google Scholar 

  57. Agarwal R (2000) Cell signaling and regulators of cell cycle as molecular targets for prostate cancer prevention by dietary agents. Biochem Pharmacol 60:1051–1059

    CAS  PubMed  Google Scholar 

  58. Wu D, Guo Z, Ren Z, Guo W, Meydani SN (2009) Green tea EGCG suppresses T cell proliferation through impairment of IL-2/IL-2 receptor signaling. Free Radic Bio Med 47:636–643

    CAS  Google Scholar 

  59. Lin SC, Li WC, Shih JW, Hong KF, Pan YR, Lin JJ (2006) The tea polyphenols EGCG and EGC repress mRNA expression of human telomerase reverse transcriptase (hTERT) in carcinoma cells. Cancer Lett 236:80–88

    CAS  PubMed  Google Scholar 

  60. Baatout S, Derradji H, Jacquet P, Mergeay M (2005) Increased radiation sensitivity of an eosinophilic cell line following treatment with epigallocatechin-gallate, resveratrol and curcuma. Int J Mol Med 15:337–352

    CAS  PubMed  Google Scholar 

  61. Aggarwal BB, Shishodia S (2006) Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 71:1397–1421

    CAS  PubMed  Google Scholar 

  62. Khan N, Mukhtar H (2008) Multitargeted therapy of cancer by green tea polyphenols. Cancer Lett 269:269–280

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Sarkar FH, Li Y, Wang Z, Kong D (2009) Cellular signaling perturbation by natural products. Cell Signal 21:1541–1547

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Lambert JD, Yang CS (2003) Mechanisms of cancer prevention by tea constituents. J Nutr 133:3262S–3267S

    CAS  PubMed  Google Scholar 

  65. Miner JN, Yamamoto KR (1992) The basic region of AP-1 specifies glucocorticoid receptor activity at a composite response element. Gene Dev 6:2491–2501

    CAS  PubMed  Google Scholar 

  66. Yang CS, Lambert JD, Hou Z, Ju J, Lu G, Hao X (2006) Molecular targets for the cancer preventive activity of tea polyphenols. Mol Carcinog 45:431–435

    CAS  PubMed  Google Scholar 

  67. Tachibana H, Koga K, Fujimura Y, Yamada K (2004) A receptor for green tea polyphenol EGCG. Nat Struct Mol Biol 11:380

    CAS  PubMed  Google Scholar 

  68. Samani AA, Yakar S, LeRoith D, Brodt P (2007) The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocr Rev 28:20–47

    CAS  PubMed  Google Scholar 

  69. Yang CS, Sang S, Lambert JD, Hou Z, Ju J, Lu G (2006) Possible mechanisms of the cancer-preventive activities of green tea. Mol Nutr Food Res 50:170–175

    CAS  PubMed  Google Scholar 

  70. Chung JY, Huang C, Meng X, Dong Z, Yang CS (1999) Inhibition of activator protein 1 activity and cell growth by purified green tea and black tea polyphenols in H-ras-transformed cells structure–activity relationship and mechanisms involved. Cancer Res 59:4610–4617

    CAS  PubMed  Google Scholar 

  71. Smith DM, Wang Z, Kazi A, Li L-H, Chan T-H, Dou QP (2002) Synthetic analogs of green tea polyphenols as proteasome inhibitors. Mol Med 8:382–392

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Gusman J, Malonne H, Atassi G (2001) A reappraisal of the potential chemopreventive and chemotherapeutic properties of resveratrol. Carcinogenesis 22:1111–1117

    CAS  PubMed  Google Scholar 

  73. Gosslau A, Chen KY (2004) Nutraceuticals, apoptosis, and disease prevention. Nutrition 20:95–102

    CAS  PubMed  Google Scholar 

  74. Lu YP, Lou YR, Xie JG, Peng QY, Liao J, Yang CS et al (2002) Topical applications of caffeine or (−)-epigallocatechin gallate (EGCG) inhibit carcinogenesis and selectively increase apoptosis in UVB-induced skin tumors in mice. P Natl Acad Sci USA 99:12455–12460

    CAS  Google Scholar 

  75. Lee YK, Bone ND, Strege AK, Shanafelt TD, Jelinek DF, Kay NE (2004) VEGF receptor phosphorylation status and apoptosis is modulated by a green tea component, epigallocatechin-3-gallate (EGCG), in B-cell chronic lymphocytic leukemia. Blood 104:788–794

    CAS  PubMed  Google Scholar 

  76. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    CAS  PubMed  Google Scholar 

  77. Budihardjo I, Oliver H, Lutter M, Luo X, Wang X (1999) Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Bi 15:269–290

    CAS  Google Scholar 

  78. Salvesen GS, Dixit VM (1999) Caspase activation: the induced-proximity model. P Natl Acad Sci USA 96:10964–10967

    CAS  Google Scholar 

  79. Qin J, Xie LP, Zheng XY, Wang YB, Bai Y, Shen HF et al (2007) A component of green tea, (−)-epigallocatechin-3-gallate, promotes apoptosis in T24 human bladder cancer cells via modulation of the PI3K/Akt pathway and Bcl-2 family proteins. Biochem Bioph Res Co 354:852–857

    CAS  Google Scholar 

  80. Gupta S, Hastak K, Afaq F, Ahmad N, Mukhtar H (2004) Essential role of caspases in epigallocatechin-3-gallate-mediated inhibition of nuclear factor kappa B and induction of apoptosis. Oncogene 23:2507–2522

    CAS  PubMed  Google Scholar 

  81. Brusselmans K, De Schrijver E, Heyns W, Verhoeven G, Swinnen JV (2003) Epigallocatechin-3-gallate is a potent natural inhibitor of fatty acid synthase in intact cells and selectively induces apoptosis in prostate cancer cells. Int J Cancer 106:856–862

    CAS  PubMed  Google Scholar 

  82. Siddiqui IA, Malik A, Adhami VM, Asim M, Hafeez BB, Sarfaraz S et al (2008) Green tea polyphenol EGCG sensitizes human prostate carcinoma LNCaP cells to TRAIL-mediated apoptosis and synergistically inhibits biomarkers associated with angiogenesis and metastasis. Oncogene 27:2055–2063

    CAS  PubMed  Google Scholar 

  83. Roy AM, Baliga MS, Katiyar SK (2005) Epigallocatechin-3-gallate induces apoptosis in estrogen receptor–negative human breast carcinoma cells via modulation in protein expression of p53 and Bax and caspase-3 activation. Mol Cancer Ther 4:81–90

    CAS  PubMed  Google Scholar 

  84. Shankar S, Chen Q, Srivastava RK (2008) Inhibition of PI3K/AKT and MEK/ERK pathways act synergistically to enhance antiangiogenic effects of EGCG through activation of FOXO transcription factor. J Mol Signal 3:7

    PubMed Central  PubMed  Google Scholar 

  85. Dorsam RT, Gutkind JS (2007) G-protein-coupled receptors and cancer. Nat Rev Cancer 7:79–94

    CAS  PubMed  Google Scholar 

  86. Jung YD, Ellis LM (2001) Inhibition of tumour invasion and angiogenesis by epigallocatechin gallate (EGCG), a major component of green tea. Int J Exp Pathol 82:309–316

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Yamakawa S, Asai T, Uchida T, Matsukawa M, Akizawa T, Oku N (2004) (−)-Epigallocatechin gallate inhibits membrane-type 1 matrix metalloproteinase, MT1-MMP, and tumor angiogenesis. Cancer Lett 210:47–55

    CAS  PubMed  Google Scholar 

  88. Khan N, Mukhtar H (2010) Cancer and metastasis: prevention and treatment by green tea. Cancer Metast Rev 29:435–445

    Google Scholar 

  89. Garbisa S, Biggin S, Cavallarin N, Sartor L, Benelli R, Albini A (1999) Tumor invasion: molecular shears blunted by green tea. Nat Med 5:1216

    CAS  PubMed  Google Scholar 

  90. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174

    CAS  PubMed  Google Scholar 

  91. Bigelow R, Cardelli J (2006) The green tea catechins,(−)-epigallocatechin-3-gallate (EGCG) and (−)-epicatechin-3-gallate (ECG), inhibit HGF/Met signaling in immortalized and tumorigenic breast epithelial cells. Oncogene 25:1922–1930

    CAS  PubMed  Google Scholar 

  92. Suzuki Y, Isemura M (2001) Inhibitory effect of epigallocatechin gallate on adhesion of murine melanoma cells to laminin. Cancer letters 173:15–20

    CAS  PubMed  Google Scholar 

  93. Punathil T, Tollefsbol TO, Katiyar SK (2008) EGCG inhibits mammary cancer cell migration through inhibition of nitric oxide synthase and guanylate cyclase. Biochem Biophys Res Co 375:162–167

    CAS  Google Scholar 

  94. Tang FY, Chiang EP, Shih CJ (2007) Green tea catechin inhibits ephrin-A1-mediated cell migration and angiogenesis of human umbilical vein endothelial cells. J Nutr Biochem 18:391–399

    CAS  PubMed  Google Scholar 

  95. Fassina G, Venè R, Morini M, Minghelli S, Benelli R, Noonan DM et al (2004) Mechanisms of inhibition of tumor angiogenesis and vascular tumor growth by epigallocatechin-3-gallate. Clin Cancer Res 10:4865–4873

    CAS  PubMed  Google Scholar 

  96. Lamy S, Gingras D, Béliveau R (2002) Green tea catechins inhibit vascular endothelial growth factor receptor phosphorylation. Cancer Res 62:381–385

    CAS  PubMed  Google Scholar 

  97. Kondo T, Ohta T, Igura K, Hara Y, Kaji K (2002) Tea catechins inhibit angiogenesis in vitro, measured by human endothelial cell growth, migration and tube formation, through inhibition of VEGF receptor binding. Cancer Lett 180:139–144

    CAS  PubMed  Google Scholar 

  98. Liu L, Lai CQ, Nie L, Ordovas J, Band M, Moser L et al (2008) The modulation of endothelial cell gene expression by green tea polyphenol-EGCG. Mol Nutr Food Res 52:1182–1192

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Zhu BH, Chen HY, Zhan WH, Wang CY, Cai SR, Wang Z et al (2011) (−)-Epigallocatechin-3-gallate inhibits VEGF expression induced by IL-6 via Stat3 in gastric cancer. WJG 17:2315–2325

    CAS  PubMed  Google Scholar 

  100. Tang FY, Meydani M (2001) Green tea catechins and vitamin E inhibit angiogenesis of human microvascular endothelial cells through suppression of IL-8 production. Nutr Cancer 41:119–125

    CAS  PubMed  Google Scholar 

  101. Kim YS, Farrar W, Colburn NH, Milner JA (2012) Cancer stem cells: potential target for bioactive food components. J Nutr Biochem 23:691–698

    CAS  PubMed  Google Scholar 

  102. Li Y, Wicha MS, Schwartz SJ, Sun D (2011) Implications of cancer stem cell theory for cancer chemoprevention by natural dietary compounds. J Nutr Biochem 22:799–806

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Tang S-N, Singh C, Nall D, Meeker D, Shankar S, Srivastava RK (2010) The dietary bioflavonoid quercetin synergizes with epigallocathechin gallate (EGCG) to inhibit prostate cancer stem cell characteristics, invasion, migration and epithelial-mesenchymal transition. J Mol Signal 5:14

    PubMed Central  PubMed  Google Scholar 

  104. Curtin JC, Lorenzi MV (2010) Drug discovery approaches to target Wnt signaling in cancer stem cells. Oncotarget 1:552

    PubMed  Google Scholar 

  105. Bode AM, Dong Z (2009) Epigallocatechin 3-gallate and green tea catechins: united they work, divided they fail. Cancer Prev Res 2:514–517

    CAS  Google Scholar 

  106. Suganuma M, Saha A, Fujiki H (2011) New cancer treatment strategy using combination of green tea catechins and anticancer drugs. Cancer Sci 102:317–323

    CAS  PubMed  Google Scholar 

  107. Scandlyn M, Stuart E, Somers-Edgar T, Menzies A, Rosengren R (2008) A new role for tamoxifen in oestrogen receptor-negative breast cancer when it is combined with epigallocatechin gallate. BRIT J Cancer 99:1056–1063

    CAS  PubMed  Google Scholar 

  108. Sartippour MR, Pietras R, Marquez-Garban DC, Chen HW, Heber D, Henning SM et al (2006) The combination of green tea and tamoxifen is effective against breast cancer. Carcinogenesis 27:2424–2433

    CAS  PubMed  Google Scholar 

  109. Boolbol SK, Dannenberg AJ, Chadburn A, Martucci C, Guo XJ, Ramonetti JT et al (1996) Cyclooxygenase-2 overexpression and tumor formation are blocked by sulindac in a murine model of familial adenomatous polyposis. Cancer Res 56:2556–2560

    CAS  PubMed  Google Scholar 

  110. Cruz-Correa M, Hylind LM, Romans KE, Booker SV, Giardiello FM (2002) Long-term treatment with sulindac in familial adenomatous polyposis: a prospective cohort study. Gastroenterology 122:641–645

    CAS  PubMed  Google Scholar 

  111. Fujiki H, Suganuma M, Kurusu M, Okabe S, Imayoshi Y, Taniguchi S et al (2003) New TNF-α releasing inhibitors as cancer preventive agents from traditional herbal medicine and combination cancer prevention study with EGCG and sulindac or tamoxifen. Mutat Res-Fund Mol M 523:119–125

    Google Scholar 

  112. Kim SH, Hwang CI, Juhnn YS, Lee JH, Park WY, Song YS (2007) GADD153 mediates celecoxib-induced apoptosis in cervical cancer cells. Carcinogenesis 28:223–231

    CAS  PubMed  Google Scholar 

  113. Sharafkhaneh A, Velamuri S, Moghaddam SJ, Badmaev V, Dickey B, Kurie J. (2008) Natural Agents for Chemoprevention of Lung Cancer. Lung Cancer:441

  114. Suganuma M, Kurusu M, Suzuki K, Tasaki E, Fujiki H (2006) Green tea polyphenol stimulates cancer preventive effects of celecoxib in human lung cancer cells by upregulation of GADD153 gene. Int J Cancer 119:33–40

    CAS  PubMed  Google Scholar 

  115. Somers-Edgar TJ, Scandlyn MJ, Stuart EC, Le Nedelec MJ, Valentine SP, Rosengren RJ (2008) The combination of epigallocatechin gallate and curcumin suppresses ERα-breast cancer cell growth in vitro and in vivo. Int J Cancer 122:1966–1971

    CAS  PubMed  Google Scholar 

  116. Khafif A, Schantz SP, Chou TC, Edelstein D, Sacks PG (1998) Quantitation of chemopreventive synergism between (−)-epigallocatechin-3-gallate and curcumin in normal, premalignant and malignant human oral epithelial cells. Carcinogenesis 19:419–424

    CAS  PubMed  Google Scholar 

  117. Amin AR, Khuri FR, Shin DM (2009) Synergistic growth inhibition of squamous cell carcinoma of the head and neck by erlotinib and epigallocatechin-3-gallate: the role of p53-dependent inhibition of nuclear factor-κB. Cancer Prev Res 2:538–545

    CAS  Google Scholar 

  118. Hou Z, Sang S, You H, Lee MJ, Hong J, Chin KV et al (2005) Mechanism of action of (−)-epigallocatechin-3-gallate: auto-oxidation–dependent inactivation of epidermal growth factor receptor and direct effects on growth inhibition in human esophageal cancer KYSE 150 cells. Cancer Res 65:8049–8056

    CAS  PubMed  Google Scholar 

  119. Hwang JT, Ha J, Park IJ, Lee SK, Baik HW, Kim YM et al (2007) Apoptotic effect of EGCG in HT-29 colon cancer cells via AMPK signal pathway. Cancer Lett 247:115–121

    CAS  PubMed  Google Scholar 

  120. Chen H, Landen CN, Li Y, Alvarez RD, Tollefsbol TO (2013) Epigallocatechin gallate and sulforaphane combination treatment induce apoptosis in paclitaxel-resistant ovarian cancer cells through hTERT and Bcl-2 down-regulation. Exp Cell Res 319:697–706

    CAS  PubMed  Google Scholar 

  121. Luo T, Wang J, Yin Y, Hua H, Jing J, Sun X et al (2010) (−)-Epigallocatechin gallate sensitizes breast cancer cells to paclitaxel in a murine model of breast carcinoma. Breast Cancer Res. doi:10.1186/bcr2473

    Google Scholar 

  122. Kweon MH, Adhami VM, Lee JS, Mukhtar H (2006) Constitutive overexpression of Nrf2-dependent heme oxygenase-1 in A549 cells contributes to resistance to apoptosis induced by epigallocatechin 3-gallate. J Biol Chem 281:33761–33772

    CAS  PubMed  Google Scholar 

  123. Levites Y, Amit T, Youdim MBH, Mandel S (2002) Involvement of protein kinase C activation and cell survival/cell cycle genes in green tea polyphenol (−)-epigallocatechin 3-gallate neuroprotective action. J Biol Chem 277:30574–30580

    CAS  PubMed  Google Scholar 

  124. Urusova DV, Shim JH, Kim DJ, Jung SK, Zykova TA, Carper A et al (2011) Epigallocatechin-gallate suppresses tumorigenesis by directly targeting Pin1. Cancer Prev Res 4:1366–1377

    CAS  Google Scholar 

  125. Niedzwiecki A, Roomi MW, Kalinovsky T, Rath M (2010) Micronutrient synergy—a new tool in effective control of metastasis and other key mechanisms of cancer. Cancer Metast Rev 29:529–542

    CAS  Google Scholar 

  126. Balasubramanian S, Eckert RL (2007) Keratinocyte proliferation, differentiation, and apoptosis–differential mechanisms of regulation by curcumin, EGCG and apigenin. Toxicol Appl Pharm 224:214–219

    CAS  Google Scholar 

  127. Manna S, Banerjee S, Mukherjee S, Das S, Panda CK (2006) Epigallocatechin gallate induced apoptosis in Sarcoma180 cells in vivo: mediated by p53 pathway and inhibition in U1B, U4-U6 UsnRNAs expression. Apoptosis 11:2267–2276

    CAS  PubMed  Google Scholar 

  128. Katiyar S, Elmets CA, Katiyar SK (2007) Green tea and skin cancer: photoimmunology, angiogenesis and DNA repair. J Nutr Biochem 18:287–296

    CAS  PubMed  Google Scholar 

  129. Suganuma M, Sueoka E, Sueoka N, Okabe S, Fujiki H (2000) Mechanisms of cancer prevention by tea polyphenols based on inhibition of TNF-α expression. Biofactors 13:67–72

    CAS  PubMed  Google Scholar 

  130. Ohishi T, Kishimoto Y, Miura N, Shiota G, Kohri T, Hara Y et al (2002) Synergistic effects of (−)-epigallocatechin gallate with sulindac against colon carcinogenesis of rats treated with azoxymethane. Cancer Lett 177:49–56

    CAS  PubMed  Google Scholar 

  131. Boreddy SR, Srivastava SK (2012) Pancreatic cancer chemoprevention by phytochemicals. Cancer Lett 334:86–94

    Google Scholar 

  132. Ha J, Zhao L, Zhao Q, Yao J, Zhu BB, Lu N et al (2012) Oroxylin A improves the sensitivity of HT-29 human colon cancer cells to 5-FU through modulation of the COX-2 signaling pathway. Biochem Cell Biol 90:521–531

    CAS  PubMed  Google Scholar 

  133. Sadzuka Y, Sugiyama T, Hirota S (1998) Modulation of cancer chemotherapy by green tea. Clin Cancer Res 4:153–156

    CAS  PubMed  Google Scholar 

  134. Chang CM, Chang PY, Tu MG, Lu CC, Kuo SC, Amagaya S et al (2012) Epigallocatechin gallate sensitizes CAL-27 human oral squamous cell carcinoma cells to the anti-metastatic effects of gefitinib (Iressa) via synergistic suppression of epidermal growth factor receptor and matrix metalloproteinase-2. Oncol Rep 28:1799–1807

    CAS  PubMed  Google Scholar 

  135. Liang Y-C, Lin-Shiau S-Y, Chen C-F, Lin J-K (1997) Suppression of extracellular signals and cell proliferation through EGF receptor binding by (−)-epigallocatechin gallate in human A431 epidermoid carcinoma cells. J Cell Biochem 67:55–65

    CAS  PubMed  Google Scholar 

  136. Sun C-L, Yuan J-M, Koh W-P, Mimi CY (2006) Green tea, black tea and breast cancer risk: a meta-analysis of epidemiological studies. Carcinogenesis 27:1310–1315

    CAS  PubMed  Google Scholar 

  137. Nakachi K, Matsuyama S, Miyake S, Suganuma M, Imai K (2000) Preventive effects of drinking green tea on cancer and cardiovascular disease: epidemiological evidence for multiple targeting prevention. Biofactors 13:49–54

    CAS  PubMed  Google Scholar 

  138. Jankun J, Selman SH, Swiercz R, Skrzypczak-Jankun E (1997) Why drinking green tea could prevent cancer. Nature 387:561

    CAS  PubMed  Google Scholar 

  139. Imai K, Suga K, Nakachi K (1997) Cancer-preventive effects of drinking green tea among a Japanese population. Prev Med 26:769

    CAS  PubMed  Google Scholar 

  140. Crew KD, Brown P, Greenlee H, Bevers TB, Arun B, Hudis C et al (2012) Phase IB randomized, double-blinded, placebo-controlled, dose escalation study of polyphenon e in women with hormone receptor–negative breast cancer. Cancer Prev Res 5:1144–1154

    CAS  Google Scholar 

  141. Pisters KM, Newman RA, Coldman B, Shin DM, Khuri FR, Hong WK et al (2001) Phase I trial of oral green tea extract in adult patients with solid tumors. J Clin Oncol 19:1830–1838

    CAS  PubMed  Google Scholar 

  142. Shanafelt TD, Call TG, Zent CS, Leis JF, LaPlant B, Bowen DA et al (2012) Phase 2 trial of daily, oral polyphenon E in patients with asymptomatic, Rai stage 0 to II chronic lymphocytic leukemia. Cancer 119(2):363–370

    PubMed  Google Scholar 

  143. Moyers SB, Kumar NB (2004) Green tea polyphenols and cancer chemoprevention: multiple mechanisms and endpoints for phase II trials. Nutr Rev 62:204–211

    PubMed  Google Scholar 

  144. Webb T (2000) Green tea experiments in lab, clinic yield mixed results. J Natl Cancer I 92:1038–1039

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Zheng Shi and Huai-long Xu (Sichuan University) for providing constructive suggestions. We also thank Xin Li (Sichuan University) for critically reading the manuscript and Yong-ao Tong (Sichuan University) for technical assistance. This work was supported in part by the National Natural Science Foundation of China (No. 81173093, No. 30970643, and No. J1103518), the Special Program for Youth Science and the Technology Innovative Research Group of Sichuan Province, China (No. 2011JTD0026).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Li or Jin-ku Bao.

Additional information

Yang Yu and Yuan Deng have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Y., Deng, Y., Lu, Bm. et al. Green tea catechins: a fresh flavor to anticancer therapy. Apoptosis 19, 1–18 (2014). https://doi.org/10.1007/s10495-013-0908-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0908-5

Keywords

Navigation