Skip to main content

Advertisement

Log in

Apoptotic process in cystic fibrosis cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Cystic fibrosis (CF) is a recessively inherited disease caused by genetic lesions in CF transmembrane conductance regulator (CFTR) gene. CF is characterized by exaggerated inflammation, progressive tissue damage, and chronic bacterial colonization, mainly in the respiratory tract. The mechanisms underlying these pathological changes are increasingly well understood. However, apoptotic dysfunction in CF disease is still debated since studies report controversial results. Nonetheless, it is clear that apoptosis participates to onset of pathology and concerns various types of cells with variable susceptibility. Apoptosis is a physiological process necessary for the preservation of homeostasis of epithelial organization and function for clearance of inflammatory cells. Increased susceptibility to apoptosis in epithelial cells and failed apoptosis in neutrophils would contribute to the self-perpetuating inflammatory cycle in CF. Also, retention of mutated CFTR in the endoplasmic reticulum participates to inflammation which may trigger apoptosis. Independently of the sensibility to apoptosis of CF cells, it has been shown that clearance of apoptotic cells, due in part to decrease in efferocytosis, is flawed and that accumulation of such cells may contribute to ongoing inflammation in CF patients. Despite great advance in understanding CF pathophysiology, there is still no cure for the disease. The most recent therapeutic strategies are directed to target CFTR protein using cell and gene therapy as well as pharmacotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Griesenbach U, Alton EW (2011) Current status and future directions of gene and cell therapy for cystic fibrosis. BioDrugs 25:77–88

    Article  PubMed  CAS  Google Scholar 

  2. Cohen TS, Prince A (2012) Cystic fibrosis: a mucosal immunodeficiency syndrome. Nat Med 18:509–519

    Article  PubMed  CAS  Google Scholar 

  3. Cystic fibrosis foundation website. http://www.cff.org/AboutCF/. Accessed Feb 2013

  4. Kerem B, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A, Buchwald M, Tsui LC (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245:1073–1080

    Article  PubMed  CAS  Google Scholar 

  5. Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL et al (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073

    Article  PubMed  CAS  Google Scholar 

  6. Cantin A (1995) Cystic fibrosis lung inflammation: early, sustained, and severe. Am J Respir Crit Care Med 151:939–941

    PubMed  CAS  Google Scholar 

  7. Nichols D, Chmiel J, Berger M (2008) Chronic inflammation in the cystic fibrosis lung: alterations in inter- and intra-cellular signaling. Clin Rev Allergy Immunol 34:146–162

    Article  PubMed  CAS  Google Scholar 

  8. Farrell PM, Rosenstein BJ, White TB, Accurso FJ, Castellani C, Cutting GR, Durie PR, Legrys VA, Massie J, Parad RB, Rock MJ, Campbell PW 3rd, Cystic Fibrosis Foundation (2008) Guidelines for diagnosis of cystic fibrosis in newborn through older adults: Cystic Fibrosis Foundation consensus report. J Pediatr 153:S4–S14

    Article  PubMed  Google Scholar 

  9. Maiuri L, Raia V, De Marco G, Coletta S, de Ritis G, Londei M, Auricchio S (1997) DNA fragmentation is a feature of cystic fibrosis epithelial cells: a disease with inappropriate apoptosis? FEBS Lett 408:225–231

    Article  PubMed  CAS  Google Scholar 

  10. Zwaal RFA, Comfurius P, Bevers EM (2005) Surface exposure of phosphatidylserine in pathological cells. Cell Mol Life Sci 62:971–988

    Article  PubMed  CAS  Google Scholar 

  11. De Boeck K, Wilschanski M, Castellani C, Taylor C, Cuppens H, Dodge J, Sinaasappel M, Diagnostic Working Group (2006) Cystic fibrosis: terminology and diagnostic algorithms. Thorax 61:627–635

    Article  PubMed  Google Scholar 

  12. Stick SM, Brennan S, Murray C, Douglas T, von Ungern-Sternberg BS, Garratt LW, Gangell CL, De Klerk N, Linnane B, Ranganathan S, Robinson P, Robertson C, Sly PD, Australian Respiratory Early Surveillance Team for Cystic Fibrosis (AREST CF) (2009) Bronchiectasis in infants and preschool children diagnosed with cystic fibrosis after newborn screening. J Pediatr 155:623–628

    Article  PubMed  Google Scholar 

  13. Linnane BM, Hall GL, Nolan G, Brennan S, Stick SM, Sly PD, Robertson CF, Robinson PJ, Franklin PJ, Turner SW, Ranganathan SC, AREST-CF (2008) Lung function in infants with cystic fibrosis diagnosed by newborn screening. Am J Respir Crit Care Med 178:1238–1244

    Article  PubMed  Google Scholar 

  14. Sly PD, Brennan S, Gangell C, de Klerk N, Murray C, Mott L, Stick SM, Robinson PJ, Robertson CF, Ranganathan SC, Australian Respiratory Early Surveillance Team for Cystic Fibrosis (AREST-CF) (2009) Lung disease at diagnosis in infants with cystic fibrosis detected by newborn screening. Am J Respir Crit Care Med 180:146–152

    Article  PubMed  Google Scholar 

  15. Muhlebach MS, Stewart PW, Leigh MW, Noah TL (1999) Quantitation of inflammatory responses to bacteria in young cystic fibrosis and control patients. Am J Respir Crit Care Med 160:186–191

    Article  PubMed  CAS  Google Scholar 

  16. Pillarisetti N, Williamson E, Linnane B, Skoric B, Robertson CF, Robinson P, Massie J, Hall GL, Sly P, Stick S, Ranganathan S, Australian Respiratory Early Surveillance Team for Cystic Fibrosis (AREST CF) (2011) Infection, inflammation, and lung function decline in infants with cystic fibrosis. Am J Respir Crit Care Med 184:75–81

    Article  PubMed  Google Scholar 

  17. Basu S, Fenton MJ (2004) Toll-like receptors: function and roles in lung disease. Am J Physiol Lung Cell Mol Physiol 286:L887–L892

    Article  PubMed  CAS  Google Scholar 

  18. Zaman MM, Gelrud A, Junaidi O, Regan MM, Warny M, Shea JC, Kelly C, O’Sullivan BP, Freedman SD (2004) Interleukin 8 secretion from monocytes of subjects heterozygous for the deltaF508 cystic fibrosis transmembrane conductance regulator gene mutation is altered. Clin Diagn Lab Immunol 11:819–824

    PubMed  CAS  Google Scholar 

  19. Vandivier RW, Fadok VA, Hoffmann PR, Bratton DL, Penvari C, Brown KK, Brain JD, Accurso FJ, Henson PM (2002) Elastase-mediated phosphatidylserine receptor cleavage impairs apoptotic cell clearance in cystic fibrosis and bronchiectasis. J Clin Invest 109:661–670

    PubMed  CAS  Google Scholar 

  20. Day BJ (2005) Glutathione: a radical treatment for cystic fibrosis lung disease? Chest 127:12–14

    Article  PubMed  Google Scholar 

  21. Roum JH, Borok Z, McElvaney NG, Grimes GJ, Bokser AD, Buhl R, Crystal RG (1999) Glutathione aerosol suppresses lung epithelial surface inflammatory cell-derived oxidants in cystic fibrosis. J Appl Physiol 87:438–443

    PubMed  CAS  Google Scholar 

  22. Velsor LW, Kariya C, Kachadourian R, Day BJ (2006) Mitochondrial oxidative stress in the lungs of cystic fibrosis transmembrane conductance regulator protein mutant mice. Am J Respir Cell Mol Biol 35:579–586

    Article  PubMed  CAS  Google Scholar 

  23. Kelly-Aubert M, Trudel S, Fritsch J, Nguyen-Khoa T, Baudouin-Legros M, Moriceau S, Jeanson L, Djouadi F, Matar C, Conti M, Ollero M, Brouillard F, Edelman A (2011) GSH monoethyl ester rescues mitochondrial defects in cystic fibrosis models. Hum Mol Genet 20:2745–2759

    Article  PubMed  CAS  Google Scholar 

  24. Pier GB (2012) The challenges and promises of new therapies. J Exp Med 209:1235–1239

    Article  PubMed  CAS  Google Scholar 

  25. Jouret F, Bernard A, Hermans C, Dom G, Terryn S, Leal T, Lebecque P, Cassiman JJ, Scholte BJ, de Jonge HR, Courtoy PJ, Devuyst O (2007) Cystic fibrosis is associated with a defect in apical receptor-mediated endocytosis in mouse and human kidney. J Am Soc Nephrol 18:707–718

    Article  PubMed  CAS  Google Scholar 

  26. Raggi C, Fujiwara K, Leal T, Jouret F, Devuyst O, Terryn S (2011) Decreased renal accumulation of aminoglycoside reflects defective receptor-mediated endocytosis in cystic fibrosis and Dent’s disease. Pflugers Arch 462:851–860

    Article  PubMed  CAS  Google Scholar 

  27. Howard M, Jilling T, DuVall M, Frizzell RA (1996) cAMP-regulated trafficking of epitope-tagged CFTR. Kidney Int 49:1642–1648

    Article  PubMed  CAS  Google Scholar 

  28. Vandivier RW, Richens TR, Horstmann SA, deCathelineau AM, Ghosh M, Reynolds SD, Xiao YQ, Riches DW, Plumb J, Vachon E, Downey GP, Henson PM (2009) Dysfunctional cystic fibrosis transmembrane conductance regulator inhibits phagocytosis of apoptotic cells with proinflammatory consequences. Am J Physiol Lung Cell Mol Physiol 297:L677–L686

    Article  PubMed  CAS  Google Scholar 

  29. Tsui LC, Buchwald M, Barker D, Braman JC, Knowlton R, Schumm JW, Eiberg H, Mohr J, Kennedy D, Plavsic N et al (1985) Cystic fibrosis locus defined by a genetically linked polymorphic DNA marker. Science 230:1054–1057

    Article  PubMed  CAS  Google Scholar 

  30. Wainwright BJ, Scambler PJ, Schmidtke J, Watson EA, Law HY, Farrall M, Cooke HJ, Eiberg H, Williamson R (1985) Localization of cystic fibrosis locus to human chromosome 7cen-q22. Nature 318:384385

    Article  Google Scholar 

  31. Ford RC, Birtley J, Rosenberg MF, Zhang L (2011) CFTR three-dimensional structure. Methods Mol Biol 741:329–346

    Article  PubMed  CAS  Google Scholar 

  32. Gadsby DC, Vergani P, Csanady L (2006) The ABC protein turned chloride channel whose failure causes cystic fibrosis. Nature 440:477–483

    Article  PubMed  CAS  Google Scholar 

  33. Lewis HA, Buchanan SG, Burley SK, Conners K, Dickey M, Dorwart M, Fowler R, Gao X, Guggino WB, Hendrickson WA, Hunt JF, Kearins MC, Lorimer D, Maloney PC, Post KW, Rajashankar KR, Rutter ME, Sauder JM, Shriver S, Thibodeau PH, Thomas PJ, Zhang M, Zhao X, Emtage S (2004) Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator. EMBO J 23:282–293

    Article  PubMed  CAS  Google Scholar 

  34. Linsdell P (2006) Mechanism of chloride permeation in the cystic fibrosis transmembrane conductance regulator chloride channel. Exp Physiol 91:123129

    Google Scholar 

  35. Wang W, El Hiani Y, Linsdell P (2011) Alignment of transmembrane regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore. J Gen Physiol 138:165–178

    Article  PubMed  CAS  Google Scholar 

  36. Chen TY, Hwang TC (2008) CLC-0 and CFTR: chloride channels evolved from transporters. Physiol Rev 88:351–387

    Article  PubMed  CAS  Google Scholar 

  37. Hwang TC, Sheppard DN (2009) Gating of the CFTR Cl− channel by ATP-driven nucleotide-binding domain dimerisation. J Physiol 587:2151–2161

    Article  PubMed  CAS  Google Scholar 

  38. Vergani P, Lockless SW, Nairn AC, Gadsby DC (2005) CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains. Nature 433:876–880

    Article  PubMed  CAS  Google Scholar 

  39. Serohijos AW, Hegedus T, Aleksandrov AA, He L, Cui L, Dokholyan NV, Riordan JR (2008) Phenylalanine-508 mediates a cytoplasmic-membrane domain contact in the CFTR 3D structure crucial to assembly and channel function. Proc Natl Acad Sci USA 105:3256–3261

    Article  PubMed  CAS  Google Scholar 

  40. Gelman MS, Kopito RR (2002) Rescuing protein conformation: prospects for pharmacological therapy in cystic fibrosis. J Clin Invest 110:1591–1597

    PubMed  CAS  Google Scholar 

  41. Varga K, Jurkuvenaite A, Wakefield J, Hong JS, Guimbellot JS, Venglarik CJ, Niraj A, Mazur M, Sorscher EJ, Collawn JF, Bebok Z (2004) Efficient intracellular processing of the endogenous cystic fibrosis transmembrane conductance regulator in epithelial cell lines. J Biol Chem 279:22578–22584

    Article  PubMed  CAS  Google Scholar 

  42. Lukacs GL, Mohamed A, Kartner N, Chang XB, Riordan JR, Grinstein S (1994) Conformational maturation of CFTR but not its mutant counterpart (delta F508) occurs in the endoplasmic reticulum requires ATP. EMBO J 13:6076–6086

    PubMed  CAS  Google Scholar 

  43. Ward CL, Kopito RR (1994) Intracellular turnover of cystic fibrosis transmembrane conductance regulator. Inefficient processing and rapid degradation of wild-type and mutant protein. J Biol Chem 269:25710–25718

    PubMed  CAS  Google Scholar 

  44. Drumm M (1999) What happens to deltaF508 in vivo? J Clin Invest 103:1369–1370

    Article  PubMed  CAS  Google Scholar 

  45. Cheng SH, Gregory RJ, Marshall J, Paul S, Souza DW, White GA, O’Riordan CR, Smith AE (1990) Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63:827–834

    Article  PubMed  CAS  Google Scholar 

  46. Qu BH, Thomas PJ (1996) Alteration of the cystic fibrosis transmembrane conductance regulator folding pathway. J Biol Chem 271:7261–7264

    Article  PubMed  CAS  Google Scholar 

  47. Lukacs GL, Chang XB, Bear C, Kartner N, Mohamed A, Riordan JR, Grinstein S (1993) The delta F508 mutation decreases the stability of cystic fibrosis transmembrane conductance regulator in the plasma membrane. Determination of functional half-lives on transfected cells. J Biol Chem 268:21592–21598

    PubMed  CAS  Google Scholar 

  48. Dalemans W, Barbry P, Champigny G, Jallat S, Dott K, Dreyer D, Crystal RG, Pavirani A, Lecocq JP, Lazdunski M (1991) Altered chloride ion channel kinetics associated with the delta F508 cystic fibrosis mutation. Nature 354:526–528

    Article  PubMed  CAS  Google Scholar 

  49. Rubenstein RC (2005) Novel, mechanism-based therapies for cystic fibrosis. Curr Opin Pediatr 17:385–392

    Article  PubMed  Google Scholar 

  50. Rowe SM, Miller S, Sorscher EJ (2005) Cystic fibrosis. N Engl J Med 352:1992–2001

    Article  PubMed  CAS  Google Scholar 

  51. Sharma M, Pampinella F, Nemes C, Benharouga M, So J, Du K, Bache KG, Papsin B, Zerangue N, Stenmark H, Lukacs GL (2004) Misfolding diverts CFTR from recycling to degradation: quality control at early endosomes. J Cell Biol 164:923–933

    Article  PubMed  CAS  Google Scholar 

  52. Zielenski J (2000) Genotype and phenotype in cystic fibrosis. Respiration 67:117–133

    Article  PubMed  CAS  Google Scholar 

  53. Grove DE, Rosser MF, Watkins RL, Cyr DM (2011) Analysis of CFTR folding and degradation in transiently transfected cells. Methods Mol Biol 741:219–232

    Article  PubMed  CAS  Google Scholar 

  54. Bartoszewski R, Rab A, Jurkuvenaite A, Mazur M, Wakefield J, Collawn JF, Bebok Z (2008) Activation of the unfolded protein response by {delta}F508 CFTR. Am J Respir Cell Mol Biol 39:448–457

    Article  PubMed  CAS  Google Scholar 

  55. Bartoszewski R, Rab A, Twitty G, Stevenson L, Fortenberry J, Piotrowski A, Dumanski JP, Bebok Z (2008) The mechanism of cystic fibrosis transmembrane conductance regulator transcriptional repression during the unfolded protein response. J Biol Chem 283:12154–12165

    Article  PubMed  CAS  Google Scholar 

  56. Kerbiriou M, Le Drévo MA, Férec C, Trouvé P (2007) Coupling cystic fibrosis to endoplasmic reticulum stress: differential role of Grp78 and ATF6. Biochim Biophys Acta 1772:1236–1249

    Article  PubMed  CAS  Google Scholar 

  57. Kerbiriou M, Teng L, Benz N, Trouvé P, Férec C (2009) The calpain, caspase 12, caspase 3 cascade leading to apoptosis is altered in F508del-CFTR expressing cells. PLoS One 4:e8436

    Article  PubMed  Google Scholar 

  58. Jacquot J, Tabary O, Le Rouzic P, Clement A (2008) Airway epithelial cell inflammatory signalling in cystic fibrosis. Int J Biochem Cell Biol 40:1703–1715

    Article  PubMed  CAS  Google Scholar 

  59. Chmiel JF, Davis PB (2003) State of the art: why do the lungs of patients with cystic fibrosis become infected and why can’t they clear the infection? Respir Res 4:8

    Article  PubMed  Google Scholar 

  60. Boucher RC (2007) Cystic fibrosis: a disease of vulnerability to airway surface dehydration. Trends Mol Med 13:231–240

    Article  PubMed  CAS  Google Scholar 

  61. Donaldson SH, Bennett WD, Zeman KL, Knowles MR, Tarran R, Boucher RC (2006) Mucus clearance and lung function in cystic fibrosis with hypertonic saline. N Engl J Med 354:241–250

    Article  PubMed  CAS  Google Scholar 

  62. Durieu I, Amsellem C, Paulin C, Chambe MT, Bienvenu J, Bellon G, Pacheco Y (1999) Fas and Fas ligand expression in cystic fibrosis airway epithelium. Thorax 54:1093–1098

    Article  PubMed  CAS  Google Scholar 

  63. Rottner M, Kunzelmann C, Mergey M, Freyssinet JM, Martinez MC (2007) Exaggerated apoptosis and NF-kappaB activation in pancreatic and tracheal cystic fibrosis cells. FASEB J 21:2939–2948

    Article  PubMed  Google Scholar 

  64. Rottner M, Tual-Chalot S, Mostefai HA, Andriantsitohaina R, Freyssinet JM, Martínez MC (2011) Increased oxidative stress induces apoptosis in human cystic fibrosis cells. PLoS One 6:e24880

    Article  PubMed  CAS  Google Scholar 

  65. Chaudhary N, Datta K, Askin FB, Staab JF, Marr KA (2012) Cystic fibrosis transmembrane conductance regulator regulates epithelial cell response to Aspergillus and resultant pulmonary inflammation. Am J Respir Crit Care Med 185:301–310

    Article  PubMed  CAS  Google Scholar 

  66. Bodas M, Min T, Vij N (2011) Critical role of CFTR dependent lipid-rafts in cigarette smoke induced lung epithelial injury. Am J Physiol 300:L811–L820

    CAS  Google Scholar 

  67. Yalçin E, Talim B, Ozçelik U, Doğru D, Cobanoğlu N, Pekcan S, Kiper N (2009) Does defective apoptosis play a role in cystic fibrosis lung disease? Arch Med Res 40:561–564

    Article  PubMed  Google Scholar 

  68. Rajan S, Cacalano G, Bryan R, Ratner AJ, Sontich CU, van Heerckeren A, Davis P, Prince A (2000) Pseudomonas aeruginosa induction of apoptosis in respiratory epithelial cells: analysis of the effects of cystic fibrosis transmembrane conductance regulator dysfunction and bacterial virulence factors. Am J Respir Cell Mol Biol 23:304–312

    Article  PubMed  CAS  Google Scholar 

  69. Gottlieb RA, Dosanjh A (1996) Mutant cystic fibrosis transmembrane conductance regulator inhibits acidification and apoptosis in C127 cells: possible relevance to cystic fibrosis. Proc Natl Acad Sci USA 93:3587–3591

    Article  PubMed  CAS  Google Scholar 

  70. Tabary O, Corvol H, Boncoeur E, Chadelat K, Fitting C, Cavaillon JM, Clément A, Jacquot J (2006) Adherence of airway neutrophils and inflammatory response are increased in CF airway epithelial cell-neutrophil interactions. Am J Physiol Lung Cell Mol Physiol 290:L588–L596

    Article  PubMed  CAS  Google Scholar 

  71. McKeon DJ, Condliffe AM, Cowburn AS, Cadwallader KC, Farahi N, Bilton D, Chilvers ER (2008) Prolonged survival of neutrophils from patients with Delta F508 CFTR mutations. Thorax 63:660–661

    Article  PubMed  CAS  Google Scholar 

  72. Moriceau S, Kantari C, Mocek J, Davezac N, Gabillet J, Guerrera IC, Brouillard F, Tondelier D, Sermet-Gaudelus I, Danel C, Lenoir G, Daniel S, Edelman A, Witko-Sarsat V (2009) Coronin-1 is associated with neutrophil survival and is cleaved during apoptosis: potential implication in neutrophils from cystic fibrosis patients. J Immunol 182:7254–7763

    Article  PubMed  CAS  Google Scholar 

  73. Moriceau S, Lenoir G, Witko-Sarsat V (2010) In cystic fibrosis homozygotes and heterozygotes, neutrophil apoptosis is delayed and modulated by diamide or roscovitine: evidence for an innate neutrophil disturbance. J Innate Immun 2:260–266

    Article  PubMed  CAS  Google Scholar 

  74. Saba S, Soong G, Greenberg S, Prince A (2002) Bacterial stimulation of epithelial G-CSF and GM-CSF expression promotes PMN survival in CF airways. Am J Respir Cell Mol Biol 27:561–567

    Article  PubMed  CAS  Google Scholar 

  75. Baumann R, Casaulta C, Simon D, Conus S, Yousefi S, Simon HU (2003) Macrophage migration inhibitory factor delays apoptosis in neutrophils by inhibiting the mitochondria-dependent death pathway. FASEB J 17:2221–2230

    Article  PubMed  CAS  Google Scholar 

  76. Martinez MC, Tual-Chalot S, Leonetti D, Andriantsitohaina R (2011) Microparticles: targets and tools in cardiovascular disease. Trends Pharmacol Sci 32:659–665

    Article  PubMed  CAS  Google Scholar 

  77. Porro C, Lepore S, Trotta T, Castellani S, Ratclif L, Battaglino A, Di Gioia S, Martínez MC, Conese M, Maffione AB (2010) Isolation and characterization of microparticles in sputum from cystic fibrosis patients. Respir Res 11:94

    Article  PubMed  Google Scholar 

  78. Porro C, Di Gioia S, Trotta T, Lepore S, Panaro MA, Battaglino A, Ratclif L, Castellani S, Bufo P, Martinez MC, Conese M (2013) Pro-inflammatory effect of cystic fibrosis sputum microparticles in the murine lung. J Cyst Fibros. doi:10.1016/j.jcf.2013.03.002

    PubMed  Google Scholar 

  79. Heutinck KM, ten Berge IJ, Hack CE, Hamann J, Rowshani AT (2010) Serine proteases of the human immune system in health and disease. Mol Immunol 47:1943–1955

    Article  PubMed  CAS  Google Scholar 

  80. Zemans RL, Colgan SP, Downey GP (2009) Transepithelial migration of neutrophils: mechanisms and implications for acute lung injury. Am J Respir Cell Mol Biol 40:519–535

    Article  PubMed  CAS  Google Scholar 

  81. Fischer BM, Wong JK, Degan S, Kummarapurugu AB, Zheng S, Haridass P, Voynow JA (2013) Increased expression of senescence markers in cystic fibrosis airways. Am J Physiol Lung Cell Mol Physiol 30:394–400

    Article  Google Scholar 

  82. Le Gars M, Descamps D, Roussel D, Saussereau E, Guillot L, Ruffin M, Tabary O, Hong SS, Boulanger P, Paulais M, Malleret L, Belaaouaj A, Edelman A, Huerre M, Chignard M, Sallenave JM (2013) Neutrophil elastase degrades cystic fibrosis transmembrane conductance regulator via calpains and disables channel function in vitro and in vivo. Am J Respir Crit Care Med 187:170–179

    Article  PubMed  Google Scholar 

  83. Suzuki T, Moraes TJ, Vachon E, Ginzberg HH, Huang TT, Matthay MA, Hollenberg MD, Marshall J, McCulloch CA, Abreu MT, Chow CW, Downey GP (2005) Proteinase-activated receptor 1 mediates elastase-induced apoptosis of human lung epithelial cells. Am J Respir Cell Mol Biol 33:231–247

    Article  PubMed  CAS  Google Scholar 

  84. Henson PM, Bratton DL, Fadok VA (2001) Apoptotic cell removal. Curr Biol 11:R795–R805

    Article  PubMed  CAS  Google Scholar 

  85. Vandivier RW, Henson PM, Douglas IS (2006) Burying the dead: the impact of failed apoptotic cell removal (efferocytosis) on chronic inflammatory lung disease. Chest 129:1673–1682

    Article  PubMed  Google Scholar 

  86. Khan TZ, Wagener JS, Bost T, Martinez J, Accurso FJ, Riches DW (1995) Early pulmonary inflammation in infants with cystic fibrosis. Am J Respir Crit Care Med 151:1075–1082

    PubMed  CAS  Google Scholar 

  87. Gonzalez G, Vituret C, Di Pietro A, Chanson M, Boulanger P, Hong SS (2012) Microparticle-mediated transfer of the viral receptors CAR and CD46, and the CFTR channel in a CHO cell model confers new functions to target cells. PLoS One 7:e52326

    Article  PubMed  CAS  Google Scholar 

  88. Rogers CS, Hao Y, Rokhlina T, Samuel M, Stoltz DA, Li Y, Petroff E, Vermeer DW, Kabel AC, Yan Z, Spate L, Wax D, Murphy CN, Rieke A, Whitworth K, Linville ML, Korte SW, Engelhardt JF, Welsh MJ, Prather RS (2008) Production of CFTR-null and CFTR-ΔF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer. J Clin Invest 118:1571–1577

    Article  PubMed  CAS  Google Scholar 

  89. Ostedgaard LS, Meyerholz DK, Chen JH, Pezzulo AA, Karp PH, Rokhlina T, Ernst SE, Hanfland RA, Reznikov LR, Ludwig PS, Rogan MP, Davis GJ, Dohrn CL, Wohlford-Lenane C, Taft PJ, Rector MV, Hornick E, Nassar BS, Samuel M, Zhang Y, Richter SS, Uc A, Shilyansky J, Prather RS, McCray PB Jr, Zabner J, Welsh MJ, Stoltz DA (2011) The ΔF508 mutation causes CFTR misprocessing and cystic fibrosis-like disease in pigs. Sci Transl Med 3:74ra24

    Article  PubMed  Google Scholar 

  90. Sun X, Sui H, Fisher JT, Yan Z, Liu X, Cho HJ, Joo NS, Zhang Y, Zhou W, Yi Y, Kinyon JM, Lei-Butters DC, Griffin MA, Naumann P, Luo M, Ascher J, Wang K, Frana T, Wine JJ, Meyerholz DK, Engelhardt JF (2010) Disease phenotype of a ferret CFTR-knockout model of cystic fibrosis. J Clin Invest 120:3149–3160

    Article  PubMed  CAS  Google Scholar 

  91. Keiser NW, Engelhardt JF (2011) New animal models of cystic fibrosis: what are they teaching us? Curr Opin Pulm Med 17:478–483

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the INSERM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Carmen Martínez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soleti, R., Porro, C. & Martínez, M.C. Apoptotic process in cystic fibrosis cells. Apoptosis 18, 1029–1038 (2013). https://doi.org/10.1007/s10495-013-0874-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0874-y

Keywords

Navigation