Skip to main content
Log in

SIRT1 inhibits TNF-α-induced apoptosis of vascular adventitial fibroblasts partly through the deacetylation of FoxO1

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Sirtuin 1 (SIRT1), a NAD+-dependent class III histone deacetylase, participates in regulating cellular apoptosis, senescence and metabolism by deacetylating histones and multiple transcription factors. In this study, we aimed to determine the effect of SIRT1 on the apoptosis of vascular adventitial fibroblasts (VAFs) and related signaling pathways. SIRT1 was found in the nucleus of VAFs and translocated into the cytoplasm in response to tumor necrosis factor-α (TNF-α). Moreover, SIRT1 protein expression was reduced in VAFs stimulated with TNF-α. In addition, TNF-α increased the apoptosis of VAFs. Activation of SIRT1 by resveratrol (RSV) or overexpression of SIRT1 attenuated TNF-α-induced VAF apoptosis by decreasing the percentage of apoptotic cells and cleaved caspase-3 protein expression and increasing the Bcl-2/Bax ratio. In contrast, inhibition of SIRT1 by sirtinol/nicotinamide or knockdown of SIRT1 enhanced apoptosis of VAFs. On the other hand, knockdown of FoxO1 reduced TNF-α-induced VAF apoptosis. SIRT1 interacted with FoxO1 in VAFs by the co-immunoprecipitation assay. Further study showed that RSV or SIRT1 overexpression decreased acetylated-FoxO1 (Ac-FoxO1) protein expression in VAFs stimulated with TNF-α. Knockdown of SIRT1 resulted in an increase in Ac-FoxO1 protein expression. Taken together, these findings indicate that SIRT1 inhibits the apoptosis of VAFs, whereas FoxO1 promotes VAF apoptosis. Furthermore, the inhibitory effect of SIRT1 on VAF apoptosis is partly mediated by the deacetylation of FoxO1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Imai S, Armstrong CM, Kaeberlein M, Guarente L (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403:795–800

    Article  PubMed  CAS  Google Scholar 

  2. Haigis MC, Guarente LP (2006) Mammalian sirtuins-emerging roles in physiology, aging, and calorie restriction. Genes Dev 20:2913–2921

    Article  PubMed  CAS  Google Scholar 

  3. Zhang QJ, Wang Z, Chen HZ, Zhou S, Zheng W, Liu G, Wei YS, Cai H, Liu DP, Liang CC (2008) Endothelium-specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice. Cardiovasc Res 80:191–199

    Article  PubMed  CAS  Google Scholar 

  4. Clarke MCH, Figg N, Maguire JJ, Davenport AP, Goddard M, Littlewood TD, Bennett MR (2006) Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis. Nat Med 12:1075–1080

    Article  PubMed  CAS  Google Scholar 

  5. Sedding D, Koenig H, Krasteva G, Vogel S, Tilmanns H (2007) Sirt1 modulates foxo-dependent transcription and prevents smooth muscle cell apoptosis in response to oxidative stress. Circulation 116:S150–S155

    Google Scholar 

  6. Pillarisetti S (2008) A review of Sirt1 and Sirt1 modulators in cardiovascular and metabolic diseases. Recent Pat Cardiovasc Drug Discov 3:156–164

    Article  PubMed  CAS  Google Scholar 

  7. Yu W, Fu YC, Chen CJ, Wang X, Wang W (2009) SIRT1: a novel target to prevent atherosclerosis. J Cell Biochem 108:10–13

    Article  PubMed  CAS  Google Scholar 

  8. Sartore S, Chiavegato A, Faggin E, Franch R, Puato M, Ausoni S, Pauletto P (2001) Contribution of adventitial fibroblasts to neointima formation and vascular remodeling-From innocent bystander to active participant. Circ Res 89:1111–1121

    Article  PubMed  CAS  Google Scholar 

  9. Xu F, Ji J, Li L, Chen R, Hu WC (2007) Adventitial fibroblasts are activated in the early stages of atherosclerosis in the apolipoprotein E knockout mouse. Biochem Biophys Res Commun 352:681–688

    Article  PubMed  CAS  Google Scholar 

  10. Tanaka K, Nagata D, Hirata Y, Tabata Y, Sata RM (2011) Augmented angiogenesis in adventitia promotes growth of atherosclerotic plaque in apolipoprotein E-deficient mice. Atherosclerosis 215:366–373

    Article  PubMed  CAS  Google Scholar 

  11. Scott NA, Cipolla GD, Ross CE, Dunn B, Martin FH, Simonet L, Wilcox JN (1996) Identification of a potential role for the adventitia in vascular lesion formation after balloon overstretch injury of porcine coronary arteries. Circulation 93:2178–2187

    Article  PubMed  CAS  Google Scholar 

  12. Malik N, Francis SE, Holt CM, Gunn J, Thomas GL, Shepherd L, Chamberlain J, Newman CMH, Cumberland DC, Crossman DC (1998) Apoptosis and cell proliferation after porcine coronary angioplasty. Circulation 98:1657–1665

    Article  PubMed  CAS  Google Scholar 

  13. Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, Mayo MW (2004) Modulation of NF-kappa B-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23:2369–2380

    Article  PubMed  CAS  Google Scholar 

  14. Vaziri H, Dessain SK, Eagon EN, Imai SI, Frye RA, Pandita TK, Guarente L, Weinberg RA (2001) hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107:149–159

    Article  PubMed  CAS  Google Scholar 

  15. Cohen HY, Lavu S, Bitterman KJ, Hekking B, Imahiyerobo TA, Miller C, Frye R, Ploegh H, Kessler BM, Sinclair DA (2004) Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol Cell 13:627–638

    Article  PubMed  CAS  Google Scholar 

  16. Burgering BMT, Kops GJPL (2002) Cell cycle and death control: long live Forkheads. Trends Biochem Sci 27:352–360

    Article  PubMed  CAS  Google Scholar 

  17. Potente M, Urbich C, Sasaki K, Hofmann WK, Heeschen C, Aicher A, Kollipara R, DePinho RA, Zeiher AM, Dimmeler S (2005) Involvement of Foxo transcription factors in angiogenesis and postnatal neovascularization. J Clin Invest 115:2382–2392

    Article  PubMed  CAS  Google Scholar 

  18. Park SH, Sakamoto H, Tsuji-Tamura K, Furuyama T, Ogawa M (2009) Foxo1 is essential for in vitro vascular formation from embryonic stem cells. Biochem Biophys Res Commun 390:861–866

    Article  PubMed  CAS  Google Scholar 

  19. Hosaka T, Biggs WH, Tieu D, Boyer AD, Varki NM, Cavenee WK, Arden KC (2004) Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification. Proc Natl Acad Sci USA 101:2975–2980

    Article  PubMed  CAS  Google Scholar 

  20. Furuyama T, Kitayama K, Shimoda Y, Ogawa M, Sone K, Yoshida-Araki K, Hisatsune H, Nishikawa S, Nakayama K, Nakayama K, Ikeda K, Motoyama N, Mori N (2004) Abnormal angiogenesis in Foxo1 (Fkhr)-deficient mice. J Biol Chem 279:34741–34749

    Article  PubMed  CAS  Google Scholar 

  21. Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin YX, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, Greenberg ME (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303:2011–2015

    Article  PubMed  CAS  Google Scholar 

  22. Li GH, Chen YF, Kelpke SS, Oparil S, Thompson JA (2000) Estrogen attenuates integrin-beta(3)-dependent adventitial fibroblast migration after inhibition of osteopontin production in vascular smooth muscle cells. Circulation 101:2949–2955

    Article  PubMed  CAS  Google Scholar 

  23. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–196

    Article  PubMed  CAS  Google Scholar 

  24. Grozinger CM, Chao ED, Blackwell HE, Moazed D, Schreiber SL (2001) Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening. J Biol Chem 276:38837–38843

    Article  PubMed  CAS  Google Scholar 

  25. Bitterman KJ, Anderson RM, Cohen HY, Latorre-Esteves M, Sinclair DA (2002) Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J Biol Chem 277:45099–45107

    Article  PubMed  CAS  Google Scholar 

  26. Ji QL, Yang LN, Zhou J, Lin R, Zhang JY, Lin QQ, Wang WR, Zhang KF (2012) Protective effects of paeoniflorin against cobalt chloride-induced apoptosis of endothelial cells via HIF-1 alpha pathway. Toxicol Vitro 26:455–461

    Article  CAS  Google Scholar 

  27. Zamzami N, Marchetti P, Castedo M, Zanin C, Vayssiere JL, Petit PX, Kroemer G (1995) Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J Exp Med 181:1661–1672

    Article  PubMed  CAS  Google Scholar 

  28. Potente M, Ghaeni L, Baldessari D, Mostoslavsky R, Rossig L, Dequiedt F, Haendeler J, Mione M, Dejana E, Alt FW, Zeiher AM, Dimmeler S (2007) SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev 21:2644–2658

    Article  PubMed  CAS  Google Scholar 

  29. Burlacu A (2003) Regulation of apoptosis by Bcl-2 family proteins. J Cell Mol Med 7:249–257

    Article  PubMed  CAS  Google Scholar 

  30. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446

    Article  PubMed  CAS  Google Scholar 

  31. Tuleta I, Bauriedel G, Steinmetz M, Pabst S, Peuster M, Welsch U, Nickenig G, Skowasch D (2010) Apoptosis-regulated survival of primarily extravascular cells in proliferative active poststent neointima. Cardiovasc Pathol 19:353–360

    Article  PubMed  Google Scholar 

  32. Ling SH, Zhou LM, Li H, Dai AZ, Liu JP, Komesaroff PA, Sudhir K (2006) Effects of 17 beta-estradiol on growth and apoptosis in human vascular endothelial cells: influence of mechanical strain and tumor necrosis factor-alpha. Steroids 71:799–808

    Article  PubMed  CAS  Google Scholar 

  33. Zhang M, Yuan F, Liu H, Chen H, Qiu XB, Fang WY (2008) Inhibition of proliferation and apoptosis of vascular smooth muscle cells by ghrelin. Acta Biochim Biophys Sin 40:769–776

    CAS  Google Scholar 

  34. Ramana KV, Bhatnagar A, Srivastava SK (2004) Aldose reductase regulates TNF-alpha-induced cell signaling and apoptosis in vascular endothelial cells. FEBS Lett 570:189–194

    Article  PubMed  CAS  Google Scholar 

  35. Lalier L, Cartron PF, Juin P, Nedelkina S, Manon S, Bechinger B, Vallette FM (2007) Bax activation and mitochondrial insertion during apoptosis. Apoptosis 12:887–896

    Article  PubMed  CAS  Google Scholar 

  36. Lee HC, Yin PH, Lu CY, Chi CW, Wei YH (2000) Increase of mitochondria and mitochondrial DNA in response to oxidative stress in human cells. Biochem J 348:425–432

    Article  PubMed  CAS  Google Scholar 

  37. Obara H, Takayanagi A, Hirahashi J, Tanaka K, Wakabayashi G, Matsumoto K, Shimazu M, Shimizu N, Kitajima M (2000) Overexpression of truncated I kappa B alpha induces TNF-alpha-dependent apoptosis in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 20:2198–2204

    Article  PubMed  CAS  Google Scholar 

  38. Xu JW, Ikeda K, Yamori Y (2007) Inhibitory effect of polyphenol cyanidin on TNF-alpha-induced apoptosis through multiple signaling pathways in endothelial cells. Atherosclerosis 193:299–308

    Article  PubMed  CAS  Google Scholar 

  39. Langley E, Pearson M, Faretta M, Bauer UM, Frye RA, Minucci S, Pelicci PG, Kouzarides T (2002) Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J 21:2383–2396

    Article  PubMed  CAS  Google Scholar 

  40. Jin QH, Yan TT, Ge XJ, Sun C, Shi XG, Zhai QW (2007) Cytoplasm-localized SIRT1 enhances apoptosis. J Cell Physiol 213:88–97

    Article  PubMed  CAS  Google Scholar 

  41. Hou JL, Wang SH, Shang YC, Chong ZZ, Maiese K (2011) Erythropoietin employs cell longevity pathways of SIRT1 to foster endothelial vascular integrity during oxidant stress. Curr Neurovasc Res 8:220–235

    Article  PubMed  CAS  Google Scholar 

  42. Dvir-Ginzberg M, Gagarina V, Lee EJ, Booth R, Gabay O, Hall DJ (2011) Tumor necrosis factor alpha-mediated cleavage and inactivation of sirT1 in human osteoarthritic chondrocytes. Arthritis Rheum 63:2363–2373

    Article  PubMed  CAS  Google Scholar 

  43. Li L, Zhang HN, Chen HZ, Gao P, Zhu LH, Li HL, Lv X, Zhang QJ, Zhang R, Wang Z, She ZG, Zhang R, Wei YS, Du GH, Liu DP, Liang CC (2011) SIRT1 acts as a modulator of neointima formation following vascular injury in mice. Circ Res 108:1180–1189

    Article  PubMed  CAS  Google Scholar 

  44. Zhang HN, Li L, Gao P, Chen HZ, Zhang R, Wei YS, Liu DP, Liang CC (2010) Involvement of the p65/RelA subunit of NF-kappa B in TNF-alpha-induced SIRT1 expression in vascular smooth muscle cells. Biochem Biophys Res Commun 397:569–575

    Article  PubMed  CAS  Google Scholar 

  45. Ou HC, Chou FP, Sheen HM, Lin TM, Yang CH, Sheu WHH (2006) Resveratrol, a polyphenolic compound in red wine, protects against oxidized LDL-induced cytotoxicity in endothelial cells. Clin Chim Acta 364:196–204

    Article  PubMed  CAS  Google Scholar 

  46. Li BY, Li XL, Cai Q, Gao HQ, Cheng M, Zhang JH, Wang JF, Yu F, Zhou RH (2011) Induction of lactadherin mediates the apoptosis of endothelial cells in response to advanced glycation end products and protective effects of grape seed procyanidin B2 and resveratrol. Apoptosis 16:732–745

    Article  PubMed  CAS  Google Scholar 

  47. Fu Z, Tindall DJ (2008) FOXOs, cancer and regulation of apoptosis. Oncogene 27:2312–2319

    Article  PubMed  CAS  Google Scholar 

  48. Gilley J, Coffer PJ, Ham J (2003) FOXO transcription factors directly activate bim gene expression and promote apoptosis in sympathetic neurons. J Cell Biol 162:613–622

    Article  PubMed  CAS  Google Scholar 

  49. Urbich C, Knau A, Fichtlscherer S, Walter DH, Bruhl T, Potente M, Hofmann WK, de Vos S, Zeiher AM, Dimmeler S (2005) FOXO-dependent expression of the proapoptotic protein Bim: pivotal role for apoptosis signaling in endothelial progenitor cells. FASEB J 19:974–976

    PubMed  CAS  Google Scholar 

  50. Alikhani M, Alikhani ZB, Graves DT (2005) FOXO1 functions as a master switch that regulates gene expression necessary for tumor necrosis factor-induced fibroblast apoptosis. J Biol Chem 280:12096–12102

    Article  PubMed  CAS  Google Scholar 

  51. Kayal RA, Siqueira M, Alblowi J, McLean J, Krothapalli N, Faibish D, Einhorn TA, Gerstenfeld LC, Graves DT (2010) TNF-alpha mediates diabetes-enhanced chondrocyte apoptosis during fracture healing and stimulates chondrocyte apoptosis through FOXO1. J Bone Miner Res 25:1604–1615

    Article  PubMed  CAS  Google Scholar 

  52. Alikhani M, Roy S, Graves DT (2010) FOXO1 plays an essential role in apoptosis of retinal pericytes. Mol Vis 16:408–415

    PubMed  CAS  Google Scholar 

  53. Li SY, Bian HT, Liu Z, Wang Y, Dai JH, He WF, Liao XG, Liu RR, Luo J (2012) Chlorogenic acid protects MSCs against oxidative stress by altering FOXO family genes and activating intrinsic pathway. Eur J Pharmacol 674:65–72

    Article  PubMed  CAS  Google Scholar 

  54. Huang HJ, Tindall DJ (2007) Dynamic FoxO transcription factors. J Cell Sci 120:2479–2487

    Article  PubMed  CAS  Google Scholar 

  55. Banks AS, Kon N, Knight C, Matsumoto M, Gutierrez-Juarez R, Rossetti L, Gu W, Accili D (2008) SirT1 Gain of Function Increases Energy Efficiency and Prevents Diabetes in Mice. Cell Metab 8:333–341

    Article  PubMed  CAS  Google Scholar 

  56. Zhao T, Li JA, Chen AF (2010) MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1. Am J Physiol Endocrinol Metab 299:E110–E116

    Article  PubMed  CAS  Google Scholar 

  57. Chae HD, Broxmeyer HE (2011) SIRT1 deficiency downregulates PTEN/JNK/FOXO1 pathway to block reactive oxygen species-induced apoptosis in mouse embryonic stem cells. Stem Cells Dev 20:1277–1285

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 81072643 and No. 81270347), Natural Science Foundation of Shaanxi Province (2012JQ4025), and Fundamental Research Funds for the Central Universities (XJ08142011 and XJ08143045). We thank Prof. Jeng-Jiann Chiu (National Health Research Institutes, Taiwan) for his help in language.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Yan, C., Zhang, J. et al. SIRT1 inhibits TNF-α-induced apoptosis of vascular adventitial fibroblasts partly through the deacetylation of FoxO1. Apoptosis 18, 689–701 (2013). https://doi.org/10.1007/s10495-013-0833-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0833-7

Keywords

Navigation