Skip to main content
Log in

Proteasomal regulation of caspase-8 in cancer cell apoptosis

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Previous studies demonstrated that proteasome inhibition sensitizes TRAIL resistant prostate cancer cells to TRAIL-mediated apoptosis via stabilization of the active p18 subunit of caspase-8. The present study investigated the impact of proteasome inhibition on caspase-8 stability, ubiquitination, trafficking, and activation in cancer cells. Using caspase-8 deficient neuroblastoma (NB7) cells for reconstituting non-cleavable mutant forms of caspase-8, we demonstrated that the non-cleavable forms of caspase-8 are capable of inducing apoptosis comparably to wild-type caspase-8, in response to proteasome inhibitor and GST-TRAIL. Moreover in the LNCaP human prostate cancer cells, caspase-8 polyubiquitination occurs after TRAIL stimulation and caspase-8 processing. Subcellular fractionation analysis revealed caspase-8 activity in both cytosol and plasma membrane fractions in both NB7 reconstituted caspase-8 cell lines, as well the LNCaP prostate cancer cells. The present results suggest that caspase-8 stabilization through proteasome inhibition leads to reactivation of the extrinsic pathway of apoptosis and identify E3 ligase mediating caspase-8 polyubiquitination, as a novel molecular target. Inhibition of this E3 ligase in combination with TRAIL towards restoring apoptosis signaling activation may have potential therapeutic significance in resistant tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

IP:

Immunoprecipitation

PI:

Propidium iodide

TRAIL:

TNF-alpha related apoptosis inducing ligand

HDAC7:

Histone deacetylase 7

DISC:

Death inducing signaling complex

FADD:

Fas associated death domain

NB7:

Neuroblastoma 7

GST:

Glutathione S-transferase

TNF-α:

Tumor necrosis factor-α

ATCC:

American type culture collection

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

CRPC:

Castration-recurrent prostate cancer

APC:

Allophycocyanin

SH3RF1:

Plenty of SH3, POSH

PBS:

Phosphate buffered saline

c-FLIP:

Cellular FLICE-inhibitory protein

NMS:

Normal mouse serum

Siah2:

Seven in absentia homolog

References

  1. Isaacs JT (2000) Apoptosis: translating theory to therapy for prostate cancer. J Natl Cancer Inst 92(17):1367–1369

    Article  PubMed  CAS  Google Scholar 

  2. Prevarskaya N, Skryma R, Shuba Y (2004) Ca2+ homeostasis in apoptotic resistance of prostate cancer cells. Biochem Biophys Res Commun 322(4):1326–1335. doi:10.1016/j.bbrc.2004.08.037

    Article  PubMed  CAS  Google Scholar 

  3. Ohtsuka T, Buchsbaum D, Oliver P, Makhija S, Kimberly R, Zhou T (2003) Synergistic induction of tumor cell apoptosis by death receptor antibody and chemotherapy agent through JNK/p38 and mitochondrial death pathway. Oncogene 22(13):2034–2044. doi:10.1038/sj.onc.1206290

    Article  PubMed  CAS  Google Scholar 

  4. Siu WP, Pun PB, Latchoumycandane C, Boelsterli UA (2008) Bax-mediated mitochondrial outer membrane permeabilization (MOMP), distinct from the mitochondrial permeability transition, is a key mechanism in diclofenac-induced hepatocyte injury: multiple protective roles of cyclosporin A. Toxicol Appl Pharmacol 227(3):451–461. doi:10.1016/j.taap.2007.11.030

    Article  PubMed  CAS  Google Scholar 

  5. Algeciras-Schimnich A, Shen L, Barnhart BC, Murmann AE, Burkhardt JK, Peter ME (2002) Molecular ordering of the initial signaling events of CD95. Mol Cell Biol 22(1):207–220

    Article  PubMed  CAS  Google Scholar 

  6. Scott FL, Fuchs GJ, Boyd SE, Denault JB, Hawkins CJ, Dequiedt F, Salvesen GS (2008) Caspase-8 cleaves histone deacetylase 7 and abolishes its transcription repressor function. J Biol Chem 283(28):19499–19510. doi:10.1074/jbc.M800331200

    Article  PubMed  CAS  Google Scholar 

  7. Zhang X, Zhang L, Yang H, Huang X, Otu H, Libermann TA, DeWolf WC, Khosravi-Far R, Olumi AF (2007) c-Fos as a proapoptotic agent in TRAIL-induced apoptosis in prostate cancer cells. Cancer Res 67(19):9425–9434. doi:10.1158/0008-5472.CAN-07-1310

    Article  PubMed  CAS  Google Scholar 

  8. Diessenbacher P, Hupe M, Sprick MR, Kerstan A, Geserick P, Haas TL, Wachter T, Neumann M, Walczak H, Silke J, Leverkus M (2008) NF-kappaB inhibition reveals differential mechanisms of TNF versus TRAIL-induced apoptosis upstream or at the level of caspase-8 activation independent of cIAP2. J Invest Dermatol 128(5):1134–1147. doi:10.1038/sj.jid.5701141

    Article  PubMed  CAS  Google Scholar 

  9. Medema JP, Scaffidi C, Kischkel FC, Shevchenko A, Mann M, Krammer PH, Peter ME (1997) FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). EMBO J 16(10):2794–2804. doi:10.1093/emboj/16.10.2794

    Article  PubMed  CAS  Google Scholar 

  10. Krueger A, Schmitz I, Baumann S, Krammer PH, Kirchhoff S (2001) Cellular FLICE-inhibitory protein splice variants inhibit different steps of caspase-8 activation at the CD95 death-inducing signaling complex. J Biol Chem 276(23):20633–20640. doi:10.1074/jbc.M101780200

    Article  PubMed  CAS  Google Scholar 

  11. Scaffidi C, Schmitz I, Krammer PH, Peter ME (1999) The role of c-FLIP in modulation of CD95-induced apoptosis. J Biol Chem 274(3):1541–1548

    Article  PubMed  CAS  Google Scholar 

  12. Pop C, Oberst A, Drag M, Van Raam BJ, Riedl SJ, Green DR, Salvesen GS (2011) FLIP(L) induces caspase 8 activity in the absence of interdomain caspase 8 cleavage and alters substrate specificity. Biochem J 433(3):447–457. doi:10.1042/BJ20101738

    Article  PubMed  CAS  Google Scholar 

  13. Wilson TR, McLaughlin KM, McEwan M, Sakai H, Rogers KM, Redmond KM, Johnston PG, Longley DB (2007) c-FLIP: a key regulator of colorectal cancer cell death. Cancer Res 67(12):5754–5762. doi:10.1158/0008-5472.CAN-06-3585

    Article  PubMed  CAS  Google Scholar 

  14. Deveraux QL, Roy N, Stennicke HR, Van Arsdale T, Zhou Q, Srinivasula SM, Alnemri ES, Salvesen GS, Reed JC (1998) IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J 17(8):2215–2223. doi:10.1093/emboj/17.8.2215

    Article  PubMed  CAS  Google Scholar 

  15. Casciano I, Banelli B, Croce M, De Ambrosis A, di Vinci A, Gelvi I, Pagnan G, Brignole C, Allemanni G, Ferrini S, Ponzoni M, Romani M (2004) Caspase-8 gene expression in neuroblastoma. Ann N Y Acad Sci 1028:157–167. doi:10.1196/annals.1322.017

    Article  PubMed  CAS  Google Scholar 

  16. Wang J, Chun HJ, Wong W, Spencer DM, Lenardo MJ (2001) Caspase-10 is an initiator caspase in death receptor signaling. Proc Natl Acad Sci USA 98(24):13884–13888. doi:10.1073/pnas.241358198

    Article  PubMed  CAS  Google Scholar 

  17. Cursi S, Rufini A, Stagni V, Condo I, Matafora V, Bachi A, Bonifazi AP, Coppola L, Superti-Furga G, Testi R, Barila D (2006) Src kinase phosphorylates Caspase-8 on Tyr380: a novel mechanism of apoptosis suppression. EMBO J 25(9):1895–1905. doi:10.1038/sj.emboj.7601085

    Article  PubMed  CAS  Google Scholar 

  18. Jin Z, Li Y, Pitti R, Lawrence D, Pham VC, Lill JR, Ashkenazi A (2009) Cullin3-based polyubiquitination and p62-dependent aggregation of caspase-8 mediate extrinsic apoptosis signaling. Cell 137(4):721–735. doi:10.1016/j.cell.2009.03.015

    Article  PubMed  CAS  Google Scholar 

  19. Peng C, Cho YY, Zhu F, Zhang J, Wen W, Xu Y, Yao K, Ma WY, Bode AM, Dong Z (2011) Phosphorylation of caspase-8 (Thr-263) by ribosomal S6 kinase 2 (RSK2) mediates caspase-8 ubiquitination and stability. J Biol Chem 286(9):6946–6954. doi:10.1074/jbc.M110.172338

    Article  PubMed  CAS  Google Scholar 

  20. Shah SA, Potter MW, McDade TP, Ricciardi R, Perugini RA, Elliott PJ, Adams J, Callery MP (2001) 26S proteasome inhibition induces apoptosis and limits growth of human pancreatic cancer. J Cell Biochem 82(1):110–122

    Article  PubMed  CAS  Google Scholar 

  21. Yeung BH, Huang DC, Sinicrope FA (2006) PS-341 (bortezomib) induces lysosomal cathepsin B release and a caspase-2-dependent mitochondrial permeabilization and apoptosis in human pancreatic cancer cells. J Biol Chem 281(17):11923–11932. doi:10.1074/jbc.M508533200

    Article  PubMed  CAS  Google Scholar 

  22. Crawford LJ, Walker B, Ovaa H, Chauhan D, Anderson KC, Morris TC, Irvine AE (2006) Comparative selectivity and specificity of the proteasome inhibitors BzLLLCOCHO, PS-341, and MG-132. Cancer Res 66(12):6379–6386. doi:10.1158/0008-5472.CAN-06-0605

    Article  PubMed  CAS  Google Scholar 

  23. Balsas P, Lopez-Royuela N, Galan-Malo P, Anel A, Marzo I, Naval J (2009) Cooperation between Apo2L/TRAIL and bortezomib in multiple myeloma apoptosis. Biochem Pharmacol 77(5):804–812. doi:10.1016/j.bcp.2008.11.024

    Article  PubMed  CAS  Google Scholar 

  24. Berkers CR, Verdoes M, Lichtman E, Fiebiger E, Kessler BM, Anderson KC, Ploegh HL, Ovaa H, Galardy PJ (2005) Activity probe for in vivo profiling of the specificity of proteasome inhibitor bortezomib. Nat Methods 2(5):357–362. doi:10.1038/nmeth759

    Article  PubMed  CAS  Google Scholar 

  25. Yu C, Rahmani M, Dent P, Grant S (2004) The hierarchical relationship between MAPK signaling and ROS generation in human leukemia cells undergoing apoptosis in response to the proteasome inhibitor Bortezomib. Exp Cell Res 295(2):555–566. doi:10.1016/j.yexcr.2004.02.001

    Article  PubMed  CAS  Google Scholar 

  26. Wang Y, Rishi AK, Puliyappadamba VT, Sharma S, Yang H, Tarca A, Dou QP, Lonardo F, Ruckdeschel JC, Pass HI, Wali A (2010) Targeted proteasome inhibition by Velcade induces apoptosis in human mesothelioma and breast cancer cell lines. Cancer Chemother Pharmacol 66(3):455–466. doi:10.1007/s00280-009-1181-8

    Article  PubMed  CAS  Google Scholar 

  27. Nencioni A, Hua F, Dillon CP, Yokoo R, Scheiermann C, Cardone MH, Barbieri E, Rocco I, Garuti A, Wesselborg S, Belka C, Brossart P, Patrone F, Ballestrero A (2005) Evidence for a protective role of Mcl-1 in proteasome inhibitor-induced apoptosis. Blood 105(8):3255–3262. doi:10.1182/blood-2004-10-3984

    Article  PubMed  CAS  Google Scholar 

  28. Bhalla S, Balasubramanian S, David K, Sirisawad M, Buggy J, Mauro L, Prachand S, Miller R, Gordon LI, Evens AM (2009) PCI-24781 induces caspase and reactive oxygen species-dependent apoptosis through NF-kappaB mechanisms and is synergistic with bortezomib in lymphoma cells. Clin Cancer Res 15(10):3354–3365. doi:10.1158/1078-0432.CCR-08-2365

    Article  PubMed  CAS  Google Scholar 

  29. Mitsiades N, Mitsiades CS, Richardson PG, Poulaki V, Tai YT, Chauhan D, Fanourakis G, Gu X, Bailey C, Joseph M, Libermann TA, Schlossman R, Munshi NC, Hideshima T, Anderson KC (2003) The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications. Blood 101(6):2377–2380. doi:10.1182/blood-2002-06-1768

    Article  PubMed  CAS  Google Scholar 

  30. Brooks AD, Jacobsen KM, Li W, Shanker A, Sayers TJ (2010) Bortezomib sensitizes human renal cell carcinomas to TRAIL apoptosis through increased activation of caspase-8 in the death-inducing signaling complex. Mol Cancer Res 8(5):729–738. doi:10.1158/1541-7786.MCR-10-0022

    Article  PubMed  CAS  Google Scholar 

  31. Christian PA, Thorpe JA, Schwarze SR (2009) Velcade sensitizes prostate cancer cells to TRAIL induced apoptosis and suppresses tumor growth in vivo. Cancer Biol Ther 8(1):73–80

    Article  PubMed  CAS  Google Scholar 

  32. Thorpe JA, Christian PA, Schwarze SR (2008) Proteasome inhibition blocks caspase-8 degradation and sensitizes prostate cancer cells to death receptor-mediated apoptosis. Prostate 68(2):200–209. doi:10.1002/pros.20706

    Article  PubMed  CAS  Google Scholar 

  33. Oberst A, Pop C, Tremblay AG, Blais V, Denault JB, Salvesen GS, Green DR (2010) Inducible dimerization and inducible cleavage reveal a requirement for both processes in caspase-8 activation. J Biol Chem 285(22):16632–16642. doi:10.1074/jbc.M109.095083

    Article  PubMed  CAS  Google Scholar 

  34. Chang DW, Xing Z, Capacio VL, Peter ME, Yang X (2003) Interdimer processing mechanism of procaspase-8 activation. EMBO J 22(16):4132–4142. doi:10.1093/emboj/cdg414

    Article  PubMed  CAS  Google Scholar 

  35. Jane EP, Premkumar DR, Pollack IF (2011) Bortezomib sensitizes malignant human glioma cells to TRAIL, mediated by inhibition of the NF-{kappa}B signaling pathway. Mol Cancer Ther 10(1):198–208. doi:10.1158/1535-7163.MCT-10-0725

    Article  PubMed  CAS  Google Scholar 

  36. Koschny R, Holland H, Sykora J, Haas TL, Sprick MR, Ganten TM, Krupp W, Bauer M, Ahnert P, Meixensberger J, Walczak H (2007) Bortezomib sensitizes primary human astrocytoma cells of WHO grades I to IV for tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Clin Cancer Res 13(11):3403–3412. doi:10.1158/1078-0432.CCR-07-0251

    Article  PubMed  CAS  Google Scholar 

  37. Mitsiades CS, Treon SP, Mitsiades N, Shima Y, Richardson P, Schlossman R, Hideshima T, Anderson KC (2001) TRAIL/Apo2L ligand selectively induces apoptosis and overcomes drug resistance in multiple myeloma: therapeutic applications. Blood 98(3):795–804

    Article  PubMed  CAS  Google Scholar 

  38. Sayers TJ, Brooks AD, Koh CY, Ma W, Seki N, Raziuddin A, Blazar BR, Zhang X, Elliott PJ, Murphy WJ (2003) The proteasome inhibitor PS-341 sensitizes neoplastic cells to TRAIL-mediated apoptosis by reducing levels of c-FLIP. Blood 102(1):303–310. doi:10.1182/blood-2002-09-2975

    Article  PubMed  CAS  Google Scholar 

  39. Plasilova M, Zivny J, Jelinek J, Neuwirtova R, Cermak J, Necas E, Andera L, Stopka T (2002) TRAIL (Apo2L) suppresses growth of primary human leukemia and myelodysplasia progenitors. Leukemia 16(1):67–73. doi:10.1038/sj.leu.2402338

    Article  PubMed  CAS  Google Scholar 

  40. Zhang L, Ren X, Alt E, Bai X, Huang S, Xu Z, Lynch PM, Moyer MP, Wen XF, Wu X (2010) Chemoprevention of colorectal cancer by targeting APC-deficient cells for apoptosis. Nature 464(7291):1058–1061. doi:10.1038/nature08871

    Article  PubMed  CAS  Google Scholar 

  41. Li W, Zhang X, Olumi AF (2007) MG-132 sensitizes TRAIL-resistant prostate cancer cells by activating c-Fos/c-Jun heterodimers and repressing c-FLIP(L). Cancer Res 67(5):2247–2255. doi:10.1158/0008-5472.CAN-06-3793

    Article  PubMed  CAS  Google Scholar 

  42. Liu X, Yue P, Chen S, Hu L, Lonial S, Khuri FR, Sun SY (2007) The proteasome inhibitor PS-341 (bortezomib) up-regulates DR5 expression leading to induction of apoptosis and enhancement of TRAIL-induced apoptosis despite up-regulation of c-FLIP and survivin expression in human NSCLC cells. Cancer Res 67(10):4981–4988. doi:10.1158/0008-5472.CAN-06-4274

    Article  PubMed  CAS  Google Scholar 

  43. Martin DA, Siegel RM, Zheng L, Lenardo MJ (1998) Membrane oligomerization and cleavage activates the caspase-8 (FLICE/MACHalpha1) death signal. J Biol Chem 273(8):4345–4349

    Article  PubMed  CAS  Google Scholar 

  44. Christian PA, Fiandalo MV, Schwarze SR (2011) Possible role of death receptor-mediated apoptosis by the E3 ubiquitin ligases Siah2 and POSH. Mol Cancer 10:57. doi:10.1186/1476-4598-10-57

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Drs. Douglas Green and Andrew Oberst for generously providing the NB7 cell line and caspase-8 constructs. We also thank Drs. Greg Baumen and Jennifer Strange at the University of Kentucky Flow Cytometry Facility, Sarah Martin for help with the statistical analysis and Lorie Howard for her assistance with the submission process. This work was supported by the Department of Defense USAMRMC PC073314 Grant, National Institutes of Health: NIDDK, R01 DK083761, the Markey Cancer Center, and James F. Hardymon Endowment for Urology Research at the University of Kentucky.

Conflict of interest

There are no potential conflicts of interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natasha Kyprianou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. S1

A polyubiquitin pull-down was performed with the Ubiquitin Enrichment kit using Ubiquitin Extraction buffer (a stringent buffer containing 1 % NP40, 0.1 % SDS, 5 mM EDTA and a 150 mM NaCL, and 0.5 % sodium deoxycholate) followed by Western blotting probing for caspase-8 with the IC12 antibody. a Reveals the input indicating caspase-8 cleavage status of untreated and treated cells with combination epoxomicin and GST-TRAIL. b Ubiquitin IP/Caspase-8 Western revealing polyubiquitin smear only in the epoxomicin and GST-TRAIL treated samples; no signal is detected in the un-treated controls. (TIFF 589 kb)

Supplemental Fig. S2

Western blot showing caspase-8 expression status following treatment of LNCaP cells with Epoxomicin and GST-TRAIL separately and in combination. This datum serves as proof of principle that the same caspase-8 expression pattern (p18 stabilization) is observed with either Velcade or MG132 is (p18 stabilization) is maintained upon cell treatment with Epoxomicin. There is no change in expression levels of pro-caspase-8 between the non-treated and epoxomicin treated lanes. The only change in the p18 subunit as indicated when comparing the GST-TRAIL only to the combination of Epoxomicin and GST-TRAIL only. (TIFF 273 kb)

Supplemental Fig. S3

It shows a large field at a higher magnification of cells after treatment with TRAIL and Epoxomicin (4hrs)and subsequently exposed to fluorescence staining for caspase -8 and Na K ATPase co-localization. (JPG 802 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiandalo, M.V., Schwarze, S.R. & Kyprianou, N. Proteasomal regulation of caspase-8 in cancer cell apoptosis. Apoptosis 18, 766–776 (2013). https://doi.org/10.1007/s10495-013-0821-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0821-y

Keywords

Navigation