Skip to main content
Log in

MicroRNA-384-5p regulates ischemia-induced cardioprotection by targeting phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit delta (PI3K p110δ)

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are a novel class of powerful, endogenous regulators of gene expression. This study identified 16 differentially expressed miRNAs in ischemic myocardium of rats using TaqMan Low Density Array. In addition, bioinformatics analyses, such as Gene ontology and Pathway assays, were applied to determine the apoptosis pathway, only regulated by miR-384-5p, and all the associated target genes (PIK3CD, PPP3CA, PPP3CB, PPP3R1, CASP3 and IL1A). These target genes, besides PIK3CB, were shown to be significantly up-regulated by qRT-PCR assay, which further suggested that PIK3CD, PPP3CA, PPP3R1, CASP3, IL1A could be regulated by miR-384-5p. MTT, Western blot, qRT-PCR and luciferase assays were used to investigate the role of miR-384-5p in myocardial ischemia. We found that cleaved caspase3 expression was up-regulated by miR-384-5p and down-regulated by miR-384-5p inhibitor suggesting that apoptosis pathway was regulated by miR-384-5p. We also found that miR-384-5p suppressed cell viability while miR-384-5p inhibitor improved it, confirming H9c2 cell survival was affected by miR-384-5p. In addition, the PIK3CD protein level in H9c2 cells was up-regulated by miR-384-5p inhibitor. We found that miR-384-5p expression level decreased and PIK3CD protein level increased in both ischemic myocardium of rats and hypoxic H9c2 cells, and that miR-384-5p suppress PIK3CD expression through a miR-384-5p binding site within the 3′ untranslational region of PIK3CD. These results show that miR-384-5p, an important protecting factor, plays a significant role in cardioprotection by regulating PIK3CD in myocardial ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mackman N (2008) Triggers, targets and treatments for thrombosis. Nature 451:914–918

    Article  PubMed  CAS  Google Scholar 

  2. Bernardo BC, Weeks KL, Pretorius L, McMullen JR (2010) Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther 128:191–227

    Article  PubMed  CAS  Google Scholar 

  3. Matsui T, Rosenzweig A (2005) Convergent signal transduction pathways controlling cardiomyocyte survival and function: the role of PI 3-kinase and Akt. J Mol Cell Cardiol 38:63–71

    Article  PubMed  CAS  Google Scholar 

  4. Fruman DA, Meyers RE, Cantley LC (1998) Phosphoinositide kinases. Annu Rev Biochem 67:481–507

    Article  PubMed  CAS  Google Scholar 

  5. Toker A, Cantley LC (1997) Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature 387:673–676

    Article  PubMed  CAS  Google Scholar 

  6. Crackower M, Oudit G, Kozieradzki I, Sarao R, Sun H, Sasaki T et al (2002) Regulation of myocardial contractility and cell size by distinct PI3K-PTEN Signaling pathways. Cell 110:737

    Article  PubMed  CAS  Google Scholar 

  7. Lin RCY, Weeks KL, Gao X-M, Williams RBH, Bernardo BC, Kiriazis H, Matthews VB, Woodcock EA, Bouwman RD, Mollica JP, Speirs HJ, Dawes IW, Daly RJ, Shioi T, Izumo S, Febbraio MA, Du X-J, McMullen JR (2010) PI3K(p110α) protects against myocardial infarction-induced heart failure: identification of PI3K-regulated miRNA and mRNA. Arterioscler Thromb Vasc Biol 30:724–732

    Article  PubMed  CAS  Google Scholar 

  8. Oudit GY, Crackower MA, Eriksson U, Sarao R, Kozieradzki I, Sasaki T et al (2003) Phosphoinositide 3-kinase gamma-deficient mice are protected from isoproterenol-induced heart failure. Circulation 108:2147–2152

    Article  PubMed  CAS  Google Scholar 

  9. Cuellar TL, McManus MT (2005) MicroRNAs and endocrine biology. J Endocrinol 187:327–332

    Article  PubMed  CAS  Google Scholar 

  10. Wright GW, Simon RM (2003) A random variance model for detection of differential gene expression in small microarray experiments. Bioinformatics 19:2448–2455

    Article  PubMed  CAS  Google Scholar 

  11. Yang H, Crawford N, Lukes L, Finney R, Lancaster M, Hunter KW (2005) Metastasis predictive signature profiles pre-exist in normal tissues. Clin Exp Metastasis 22:593–603

    Article  PubMed  CAS  Google Scholar 

  12. Clarke R, Ressom HW, Wang A, Xuan J, Liu MC, Gehan EA, Wang Y (2008) The properties of high-dimensional data spaces: implications for exploring gene and protein expression data. Nat Rev Cancer 8:37–49

    Article  PubMed  CAS  Google Scholar 

  13. Gene Ontology Consortium (2006) The gene ontology (GO) project in 2006. Nucleic Acids Res 34:D322–D326

    Article  Google Scholar 

  14. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25(1):25–29

    Article  PubMed  CAS  Google Scholar 

  15. Dupuy D, Bertin N, Hidalgo CA, Venkatesan K, Tu D, Lee D, Rosenberg J, Svrzikapa N, Blanc A, Carnec A, Carvunis AR, Pulak R, Shingles J, Reece-Hoyes J, Hunt-Newbury R, Viveiros R, Mohler WA, Tasan M, Roth FP, Le Peuch C, Hope IA, Johnsen R, Moerman DG, Barabasi AL, Baillie D, Vidal M (2007) Genome-scale analysis of in vivo spatiotemporal promoter activity in Caenorhabditis elegans. Nat Biotechnol 25:663–668

    Article  PubMed  CAS  Google Scholar 

  16. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32:D277–D280

    Article  PubMed  CAS  Google Scholar 

  17. Yi M, Horton JD, Cohen JC, Hobbs HH, Stephens RM (2006) WholePathwayScope: a comprehensive pathway-based analysis tool for high-throughput data. BMC Bioinformatics 7:30

    Article  PubMed  Google Scholar 

  18. Draghici S, Khatri P, Tarca AL, Amin K, Done A, Voichita C, Georgescu C, Romero R (2007) A systems biology approach for pathway level analysis. Genome Res 17:1537–1545

    Article  PubMed  CAS  Google Scholar 

  19. Song XW, Li Q, Lin L (2010) MiRNAs are dynamically regulated in hypertrophic hearts, and miR-199a is essential for the maintenance of cell size in cardiomyocytes. J Cell Physiol 225:437–443

    Article  PubMed  CAS  Google Scholar 

  20. D’Alessandra Y, Pompilio G, Capogrossi MC (2012) MicroRNAs and myocardial infarction. Curr Opin Cardiol 27(3):228–235

    Article  PubMed  Google Scholar 

  21. Thum T, Galuppo P, Wolf C, Fiedler J, Kneitz S, van Laake LW, Doevendans PA, Mummery CL, Borlak J, Haverich A, Gross C, Engelhardt S, Ertl G, Bauersachs J (2007) MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 116:258–267

    Article  PubMed  CAS  Google Scholar 

  22. Mann DL (2007) MicroRNAs and the failing heart. N Engl J Med 356:2644–2645

    Article  PubMed  CAS  Google Scholar 

  23. Cheng Y, Ji R, Yue J, Yang J, Liu X, Chen H, Dean DB, Zhang C (2007) MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy? Am J Pathol 170:1831–1840

    Article  PubMed  CAS  Google Scholar 

  24. D’Alessandra Y, Pompilio G, Capogrossi MC (2012) MicroRNAs and myocardial infarction. Curr Opin Cardiol 27(3):228–235

    Article  PubMed  Google Scholar 

  25. Fang J, Song XW, Tian J, Chen HY, Li DF, Wang JF, Ren AJ, Yuan WJ, Lin L (2012) Overexpression of microRNA-378 attenuates ischemia-induced apoptosis by inhibiting caspase-3 expression in cardiac myocytes. Apoptosis 17(4):410–423

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation (No. 30830118, No. 81073085) and the Major science and technology projects of the Ministry of Science and Technology (No. 20122X09301002-004). The authors would also like to thank Li Jing from Genminix corporation for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxun Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bao, Y., Lin, C., Ren, J. et al. MicroRNA-384-5p regulates ischemia-induced cardioprotection by targeting phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit delta (PI3K p110δ). Apoptosis 18, 260–270 (2013). https://doi.org/10.1007/s10495-013-0802-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0802-1

Keywords

Navigation