Skip to main content
Log in

Mitochondrial targeting overcomes ABCA1-dependent resistance of lung carcinoma to α-tocopheryl succinate

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

α-Tocopheryl succinate (α-TOS) is a promising anti-cancer agent due to its selectivity for cancer cells. It is important to understand whether long-term exposure of tumour cells to the agent will render them resistant to the treatment. Exposure of the non-small cell lung carcinoma H1299 cells to escalating doses of α-TOS made them resistant to the agent due to the upregulation of the ABCA1 protein, which caused its efflux. Full susceptibility of the cells to α-TOS was restored by knocking down the ABCA1 protein. Similar resistance including ABCA1 gene upregulation was observed in the A549 lung cancer cells exposed to α-TOS. The resistance of the cells to α-TOS was overcome by its mitochondrially targeted analogue, MitoVES, that is taken up on the basis of the membrane potential, bypassing the enhanced expression of the ABCA1 protein. The in vitro results were replicated in mouse models of tumours derived from parental and resistant H1299 cells. We conclude that long-term exposure of cancer cells to α-TOS causes their resistance to the drug, which can be overcome by its mitochondrially targeted counterpart. This finding should be taken into consideration when planning clinical trials with vitamin E analogues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA-Cancer J Clin 62:10–29

    Article  PubMed  Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA-Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  3. Simard EP, Ward EM, Siegel R, Jemal A (2012) Cancers with increasing incidence trends in the United States: 1999 through 2008. CA-Cancer J Clin 62:118–128

    Article  Google Scholar 

  4. Jones S, Zhang XS, Parsons DW, Lin JCH, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, Hong SM, Fu BJ, Lin MT, Calhoun ES, Kamiyama M, Walter K, Nikolskaya T, Nikolsky Y, Hartigan J, Smith DR, Hidalgo M, Leach SD, Klein AP, Jaffee EM, Goggins M, Maitra A, Iacobuzio-Donahue C, Eshleman JR, Kern SE, Hruban RH, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321:1801–1806

    Article  PubMed  CAS  Google Scholar 

  5. Parsons DW, Jones S, Zhang XS, Lin JCH, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LA, Hartigan J, Smith DR, Strausberg RL, Marie SKN, Shinjo SMO, Yan H, Riggins GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812

    Article  PubMed  CAS  Google Scholar 

  6. Hayden EC (2008) Cancer complexity slows quest for cure. Nature 455(7210):148

    Article  Google Scholar 

  7. Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13:472–482

    Article  PubMed  CAS  Google Scholar 

  8. Gogvadze V, Orrenius S, Zhivotovsky B (2008) Mitochondria in cancer cells: what is so special about them? Trends Cell Biol 18:165–173

    Article  PubMed  CAS  Google Scholar 

  9. Jones RG, Thompson CB (2009) Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev 23:537–548

    Article  PubMed  CAS  Google Scholar 

  10. Fulda S, Galluzzi L, Kroemer G (2010) Targeting mitochondria for cancer therapy. Nat Rev Drug Discov 9:447–464

    Article  PubMed  CAS  Google Scholar 

  11. Neuzil J, Dyason JC, Freeman R, Dong LF, Prochazka L, Wang XF, Scheffler I, Ralph SJ (2007) Mitocans as anti-cancer agents targeting mitochondria: lessons from studies with vitamin E analogues, inhibitors of complex II. J Bioenerg Biomembr 39:65–72

    Article  PubMed  CAS  Google Scholar 

  12. Rohlena J, Dong LF, Ralph SJ, Neuzil J (2011) Anticancer drugs targeting the mitochondrial electron transport chain. Antioxid Redox Signal 15:2951–2974

    Article  PubMed  CAS  Google Scholar 

  13. Fariss MW, Fortuna MB, Everett CK, Smith JD, Trent DF, Djuric Z (1994) The selective antiproliferative effects of α-tocopheryl hemisuccinate and cholesteryl hemisuccinate on murine leukemia-cells result from the action of the intact compounds. Cancer Res 54:3346–3351

    PubMed  CAS  Google Scholar 

  14. Neuzil J, Weber T, Gellert N, Weber C (2001) Selective cancer cell killing by α-tocopheryl succinate. Br J Cancer 84:87–89

    Article  PubMed  CAS  Google Scholar 

  15. Neuzil J (2003) Vitamin E succinate and cancer treatment: a vitamin E prototype for selective antitumour activity. Br J Cancer 89:1822–1826

    Article  PubMed  CAS  Google Scholar 

  16. Yu WP, Sanders BG, Kline K (2003) RRR-α-tocopheryl succinate-induced apoptosis of human breast cancer cells involves Bax translocation to mitochondria. Cancer Res 63:2483–2491

    PubMed  CAS  Google Scholar 

  17. Gogvadze V, Norberg E, Orrenius S, Zhivotovsky B (2010) Involvement of Ca2+ and ROS in α-tocopheryl succinate-induced mitochondrial permeabilization. Int J Cancer 127:1823–1832

    Article  PubMed  CAS  Google Scholar 

  18. Prochazka L, Dong LF, Valis K, Freeman R, Ralph SJ, Turanek J, Neuzil J (2010) α-Tocopheryl succinate causes mitochondrial permeabilization by preferential formation of Bak channels. Apoptosis 15:782–794

    Article  PubMed  CAS  Google Scholar 

  19. Valis K, Prochazka L, Boura E, Chladova J, Obsil T, Rohlena J, Truksa J, Dong LF, Ralph SJ, Neuzil J (2011) Hippo/Mst1 stimulates transcription of the proapoptotic mediator NOXA in a FoxO1-dependent manner. Cancer Res 71:946–954

    Article  PubMed  CAS  Google Scholar 

  20. Kruspig B, Nilchian A, Bejarano I, Orrenius S, Zhivotovsky B, Gogvadze V (2012) Targeting mitochondria by α-tocopheryl succinate kills neuroblastoma cells irrespective of MycN oncogene expression. Cell Mol Life Sci 69:2091–2099

    Article  PubMed  CAS  Google Scholar 

  21. Dong LF, Low P, Dyason JC, Wang XF, Prochazka L, Witting PK, Freeman R, Swettenham E, Valis K, Liu J, Zobalova R, Turanek J, Spitz DR, Domann FE, Scheffler IE, Ralph SJ, Neuzil J (2008) α-Tocopheryl succinate induces apoptosis by targeting ubiquinone-binding sites in mitochondrial respiratory complex II. Oncogene 27:4324–4335

    Article  PubMed  CAS  Google Scholar 

  22. Dong LF, Freeman R, Liu J, Zobalova R, Marin-Hernandez A, Stantic M, Rohlena J, Valis K, Rodriguez-Enriquez S, Butcher B, Goodwin J, Brunk UT, Witting PK, Moreno-Sanchez R, Scheffler IE, Ralph SJ, Neuzil J (2009) Suppression of tumor growth in vivo by the mitocan α-tocopheryl succinate requires respiratory complex II. Clin Cancer Res 15:1593–1600

    Article  PubMed  CAS  Google Scholar 

  23. Sun F, Huo X, Zhai YJ, Wang AJ, Xu JX, Su D, Bartlam M, Rao ZH (2005) Crystal structure of mitochondrial respiratory membrane protein complex II. Cell 121:1043–1057

    Article  PubMed  CAS  Google Scholar 

  24. Dong LF, Jameson VJA, Tilly D, Prochazka L, Rohlena J, Valis K, Truksa J, Zobalova R, Mandavian E, Kluckova K, Stantic M, Stursa J, Freeman R, Witting PK, Norberg E, Goodwin J, Salvatore BA, Novotna J, Turanek J, Ledvina M, Hozak P, Zhivotovsky B, Coster MJ, Ralph SJ, Smith RAJ, Neuzil J (2011) Mitochondrial targeting of α-tocopheryl succinate enhances its pro-apoptotic efficacy: a new paradigm for effective cancer therapy. Free Radic Biol Med 50:1546–1555

    Article  PubMed  CAS  Google Scholar 

  25. Dong LF, Jameson VJA, Tilly D, Cerny J, Mahdavian E, Marin-Hernandez A, Hernandez-Esquivel L, Rodriguez-Enriquez S, Stursa J, Witting PK, Stantic B, Rohlena J, Truksa J, Kluckova K, Dyason JC, Ledvina M, Salvatore BA, Moreno-Sanchez R, Coster MJ, Ralph SJ, Smith RAJ, Neuzil J (2011) Mitochondrial targeting of vitamin E succinate enhances its pro-apoptotic and anti-cancer activity via mitochondrial complex II. J Biol Chem 286:3717–3728

    Article  PubMed  CAS  Google Scholar 

  26. Zhao Y, Neuzil J, Wu K (2009) Vitamin E analogues as mitochondria-targeting compounds: from the bench to the bedside? Mol Nutr Food Res 53:129–139

    Article  PubMed  CAS  Google Scholar 

  27. Goldstraw P, Ball D, Jett JR, Le Chevalier T, Lim E, Nicholson AG, Shepherd FA (2011) Non-small-cell lung cancer. Lancet 378:1727–1740

    Article  PubMed  Google Scholar 

  28. Giaccone G, Battey J, Gazdar AF, Oie H, Draoui M, Moody TW (1992) Neuromedin-b is present in lung-cancer cell-lines. Cancer Res 52:S2732–S2736

    Google Scholar 

  29. Hahn T, Szabo L, Gold M, Ramanathapuram L, Hurley LH, Akporiaye ET (2006) Dietary administration of the proapoptotic vitamin E analogue α-tocopheryloxyacetic acid inhibits metastatic murine breast cancer. Cancer Res 66:9374–9378

    Article  PubMed  CAS  Google Scholar 

  30. Tomic-Vatic A, EyTina J, Chapman J, Mahdavian E, Neuzil J, Salvatore BA (2005) Vitamin E amides, a new class of vitamin E analogues with enhanced proapoptotic activity. Int J Cancer 117:188–193

    Article  PubMed  CAS  Google Scholar 

  31. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival - application to proliferation and cyto-toxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  32. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:6

    Article  Google Scholar 

  33. Koudelka S, Masek J, Neuzil J, Turanek J (2010) Lyophilised liposome-based formulations of α-tocopheryl succinate: preparation and physico-chemical characterisation. J Pharm Sci 99:2434–2443

    PubMed  CAS  Google Scholar 

  34. Weber T, Dalen H, Andera L, Negre-Salvayre A, Auge N, Sticha M, Lloret A, Terman A, Witting PK, Higuchi M, Plasilova M, Zivny J, Gellert N, Weber C, Neuzil J (2003) Mitochondria play a central role in apoptosis induced by α-tocopheryl succinate, an agent with antineoplastic activity: comparison with receptor-mediated pro-apoptotic signaling. Biochemistry 42:4277–4291

    Article  PubMed  CAS  Google Scholar 

  35. Dong LF, Swettenham E, Eliasson J, Wang XF, Gold M, Medunic Y, Stantic M, Low P, Prochazka L, Witting PK, Turanek J, Akporiaye ET, Ralph SJ, Neuzil J (2007) Vitamin E analogues inhibit angiogenesis by selective induction of apoptosis in proliferating endothelial cells: the role of oxidative stress. Cancer Res 67:11906–11913

    Article  PubMed  CAS  Google Scholar 

  36. Wang XF, Birringer M, Dong LF, Veprek P, Low P, Swettenham E, Stantic M, Yuan LH, Zobalova R, Vu K, Ledvina M, Ralph SJ, Neuzil J (2007) A peptide conjugate of vitamin E succinate targets breast cancer cells with high ErbB2 expression. Cancer Res 67:3337–3344

    Article  PubMed  CAS  Google Scholar 

  37. Murphy MP, Smith RAJ (2007) Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol 47:629–656

    Article  PubMed  CAS  Google Scholar 

  38. Turanek J, Wang XF, Knotigova P, Koudelka S, Dong LF, Vrublova E, Mahdavian E, Prochazka L, Sangsura S, Vacek A, Salvatore BA, Neuzil J (2009) Liposomal formulation of α-tocopheryl maleamide: in vitro and in vivo toxicological profile and anticancer effect against spontaneous breast carcinomas in mice. Toxicol Appl Pharmacol 237:249–257

    Article  PubMed  CAS  Google Scholar 

  39. Park SY, Chang I, Kim JY, Kang SW, Park SH, Singh K, Lee MS (2004) Resistance of mitochondrial DNA-depleted cells against cell death - Role of mitochondrial superoxide dismutase. J Biol Chem 279:7512–7520

    Article  PubMed  CAS  Google Scholar 

  40. Ni J, Pang ST, Yeh S (2007) Differential retention of α-vitamin E is correlated with its transporter gene expression and growth inhibition efficacy in prostate cancer cells. Prostate 67:463–471

    Article  PubMed  CAS  Google Scholar 

  41. Ni J, Wen XQ, Yao J, Chang HC, Yin Y, Zhang M, Xie SZ, Chen M, Simons B, Chang P, di Sant’Agnese A, Messing EM, Yeh SY (2005) Tocopherol-associated protein suppresses prostate cancer cell growth by inhibition of the phosphoinositide 3-kinase pathway. Cancer Res 65:9807–9816

    Article  PubMed  CAS  Google Scholar 

  42. Hrzenjak A, Reicher H, Wintersperger A, Steinecker-Frohnwieser B, Sedlmayr P, Schmidt H, Nakamura T, Malle E, Sattler W (2004) Inhibition of lung carcinoma cell growth by high density lipoprotein-associated α-tocopheryl-succinate. Cell Mol Life Sci 61:1520–1531

    Article  PubMed  CAS  Google Scholar 

  43. Gillet JP, Efferth T, Remacle J (2007) Chemotherapy-induced resistance by ATP-binding cassette transporter genes. Biochim Biophys Acta-Rev Cancer 1775:237–262

    Article  CAS  Google Scholar 

  44. Gillet JP, Gottesman MM (2011) Advances in the molecular detection of ABC transporters involved in multidrug resistance in cancer. Curr Pharm Biotechnol 12:686–692

    Article  PubMed  CAS  Google Scholar 

  45. Chinetti G, Lestavel S, Bocher V, Remaley AT, Neve B, Torra IP, Teissier E, Minnich A, Jaye M, Duverger N, Brewer HB, Fruchart JC, Clavey V, Staels B (2001) PPAR-α and PPAR-γ activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med 7:53–58

    Article  PubMed  CAS  Google Scholar 

  46. Shukla A, Hillegass JM, MacPherson MB, Beuschel SL, Vacek PM, Pass HI, Carbone M, Testa JR, Mossman BT (2010) Blocking of ERK1 and ERK2 sensitizes human mesothelioma cells to doxorubicin. Mol Cancer 9:13

    Article  Google Scholar 

  47. Schimanski S, Wild PJ, Treeck O, Horn F, Sigruener A, Rudolph C, Blaszyk H, Klinkhammer-Schalke M, Ortmann O, Hartmann A, Schmitz G (2010) Expression of the lipid transporters ABCA3 and ABCA1 is diminished in human breast cancer tissue. Horm Metab Res 42:102–109

    Article  PubMed  CAS  Google Scholar 

  48. Moustafa MA, Ogino D, Nishimura M, Ueda N, Naito S, Furukawa M, Uchida T, Ikai L, Sawada H, Fukumoto M (2004) Comparative analysis of ATP-binding cassette (ABC) transporter gene expression levels in peripheral blood leukocytes and in liver with hepatocellular carcinoma. Cancer Sci 95:530–536

    Article  PubMed  CAS  Google Scholar 

  49. Park S, Shimizu C, Shimoyama T, Takeda M, Ando M, Kohno T, Katsumata N, Kang YK, Nishio K, Fujiwara Y (2006) Gene expression profiling of ATP-binding cassette (ABC) transporters as a predictor of the pathologic response to neoadjuvant chemotherapy in breast cancer patients. Breast Cancer Res Treat 99:9–17

    Article  PubMed  CAS  Google Scholar 

  50. Fletcher JI, Haber M, Henderson MJ, Norris MD (2010) ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer 10:147–156

    Article  PubMed  CAS  Google Scholar 

  51. Gillet JP, Efferth T, Steinbach D, Hamels J, de Longueville F, Bertholet V, Remacle J (2004) Microarray-based detection of multidrug resistance in human tumor cells by expression profiling of ATP-binding cassette transporter genes. Cancer Res 64:8987–8993

    Article  PubMed  CAS  Google Scholar 

  52. Szakacs G, Annereau JP, Lababidi S, Shankavaram U, Arciello A, Bussey KJ, Reinhold W, Guo YP, Kruh GD, Reimers M, Weinstein JN, Gottesman MM (2004) Predicting drug sensitivity and resistance: profiling ABC transporter genes in cancer cells. Cancer Cell 6:129–137

    Article  PubMed  CAS  Google Scholar 

  53. Bachmeier BE, Iancu CM, Killian PH, Kronski E, Mirisola V, Angelini G, Jochum M, Nerlich AG, Pfeffer U (2009) Overexpression of the ATP binding cassette gene ABCA1 determines resistance to Curcumin in M14 melanoma cells. Mol Cancer 8:12

    Article  Google Scholar 

  54. Fulda S, Kroemer G (2011) Mitochondria as therapeutic targets for the treatment of malignant disease. Antioxid Redox Signal 15:2937–2949

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Vojtesek for providing the H1299 cells and Prof. Akporiaye for α-TEA. This study was supported in part by Grants from the Australian Research Council, the National Health and Medical Research Council of Australia, the Clem Jones Foundation and the Czech Science Foundation (P301/10/1937) to J.N, and by the Grant from the Czech Science Foundation 204/09/P632 to L.P and by the Grant CZ.1.07/2.3.00/20.0164 and P304/10/1951 (Czech Scientific Foundation) to J.T.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lubomir Prochazka or Jiri Neuzil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prochazka, L., Koudelka, S., Dong, LF. et al. Mitochondrial targeting overcomes ABCA1-dependent resistance of lung carcinoma to α-tocopheryl succinate. Apoptosis 18, 286–299 (2013). https://doi.org/10.1007/s10495-012-0795-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-012-0795-1

Keywords

Navigation