Skip to main content

Advertisement

Log in

Fatty acid synthase inhibitor cerulenin inhibits topoisomerase I catalytic activity and augments SN-38-induced apoptosis

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Fatty acid synthase (FASN) is overexpressed in a wide variety of human cancers, making it an attractive target for anticancer therapy. One of the most widely used inhibitors of FASN, cerulenin, is a natural product of Cephalosporium caerulens. Cerulenin is selectively toxic to human cancer cells in vitro. However, the mechanism by which FASN inhibition causes apoptosis in tumor cells remains unclear. Because of the widespread clinical interest in combining cerulenin with other chemotherapeutic agents, we performed this study to gain insight into the downstream effects of FASN inhibition that lead to apoptosis. Here, we observed the increased antitumor effect of cerulenin when combined with the topoisomerase inhibitor SN-38. We identified topoisomerase I as a potential mediator of cerulenin-induced apoptosis, possibly by upregulating intracellular polyunsaturation. Finally, we show that suppressing topoisomerase I catalytic activity results in synergistic effects between cerulenin and LY294002. Our results suggest that topoisomerase I could participate in cerulenin-induced apoptosis by upregulating intracellular polyunsaturation. These results will help determine the molecular basis of the cerulenin and SN-38 drug combination. Further investigation of this pathway will provide new insight into cancer cell metabolism and may aid in the design of additional cancer chemotherapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wakil SJ (1989) Fatty acid synthase, a proficient multifunctional enzyme. Biochemistry 28:4523–4530

    Article  PubMed  CAS  Google Scholar 

  2. Weiss L, Hoffmann GE, Schreiber R, Andres H, Fuchs E, Körber E, Kolb HJ (1986) Fatty-acid biosynthesis in man, a pathway of minor importance. Purification, optimal assay conditions, and organ distribution of fatty-acid synthase. Biol Chem Hoppes-Seyer 367:905–912

    Article  CAS  Google Scholar 

  3. Epstein JI, Carmichael M, Partin AW (1995) OA-519 (fatty acid synthase) as an independent predictor of pathologic state in adenocarcinoma of the prostate. Urology 45:81–86

    Article  PubMed  CAS  Google Scholar 

  4. Alo’ PL, Visca P, Marci A, Mangoni A, Botti C, Di-Tondo U (1996) Expression of fatty acid synthase (FAS) as a predictor of recurrence in stage I breast carcinoma patients. Cancer 77:474–482

    Article  PubMed  Google Scholar 

  5. Shurbaji MS, Kalbfleisch JH, Thurmond TS (1996) Immunohistochemical detection of a fatty acid synthase (OA-519) as a predictor of progression of prostate cancer. Hum Pathol 27:917–921

    Article  PubMed  CAS  Google Scholar 

  6. Gansler TS, Hardman W III, Hunt DA, Schaffel S, Hennigar RA (1997) Increased expression of fatty acid synthase (OA-519) in ovarian neoplasms predicts shorter survival. Hum Pathol 28:686–692

    Article  PubMed  CAS  Google Scholar 

  7. Milgraum LZ, Witters LA, Pasternack GR, Kuhajda FP (1997) Enzymes of the fatty acid synthesis pathway are highly expressed in situ breast carcinoma. Clin Cancer Res 3:2115–2120

    PubMed  CAS  Google Scholar 

  8. Rashid A, Pizer ES, Moga M, Milgraum LZ, Zahurak M, Pasternack GR, Kuhajda FP, Hamilton SR (1997) Elevated expression of fatty acid synthase and fatty acid synthetic activity in colorectal neoplasia. Am J Pathol 150:201–218

    PubMed  CAS  Google Scholar 

  9. Piyathilake CJ, Frost AR, Manne U, Bell WC, Weiss H, Heimburger DC, Grizzle WE (2000) The expression of fatty acid synthase (FASE) is an early event in the development and progression of squamous cell carcinoma of the lung. Hum Pathol 31:1068–1073

    Article  PubMed  CAS  Google Scholar 

  10. Kusakabe T, Nashimoto A, Honma K, Suzuki T (2002) Fatty acid synthase is highly expressed in carcinoma, adenoma and in regenerative epithelium and intestinal metaplasia of the stomach. Histopathology 40:71–79

    Article  PubMed  CAS  Google Scholar 

  11. Swinnen JV, Roskams T, Joniau S, Van-Poppel H, Oyen R, Baert L, Heyns W, Verhoeven G (2002) Overexpression of fatty acid synthase is an early and common event in the development of prostate cancer. Int J Cancer 98:19–22

    Article  PubMed  CAS  Google Scholar 

  12. Innocenzi D, Alo PL, Balzani A, Sebastiani V, Silipo V, La-Torre G, Ricciardi G, Bosman C, Calvieri S (2003) Fatty acid synthase expression in melanoma. J Cutan Pathol 30:23–28

    Article  PubMed  CAS  Google Scholar 

  13. Sebastiani V, Visca P, Botti C, Santeusanio G, Galati GM, Piccini V, Capezzone-de-Joannon B, Tondo U, Alo PL (2004) Fatty acid synthase is a marker of increased risk of recurrence in endometrial carcinoma. Gynecol Oncol 92:101–105

    Article  PubMed  CAS  Google Scholar 

  14. Kuhajda FP (2000) Fatty acid synthase and human cancer: new perspectives on its role in tumor biology. Nutrition 16:202–208

    Article  PubMed  CAS  Google Scholar 

  15. Swinnen JV, Vanderhoydonc F, Elgamal AA, Eelen M, Vercaeren M, Joniau S, Van-Poppel H, Baert L, Goossens K, Heyns W, Verhoeven G (2000) Selective activation of the fatty acid synthesis pathway in human prostate cancer. Int J Cancer 88:176–179

    Article  PubMed  CAS  Google Scholar 

  16. Swinnen JV, Heemers H, Deboel L, Foufelle F, Heyns W, Verhoeven G (2000) Stimulation of tumor-associated fatty acid synthase expression by growth factor activation of the sterol regulatory element-binding protein pathway. Oncogene 19:5173–5181

    Article  PubMed  CAS  Google Scholar 

  17. Li JN, Mahmoud MA, Han WF, Ripple M, Pizer ES (2000) Sterol regulatory element-binding protein-1 participates in the regulation of fatty acid synthase expression in colorectal neoplasia. Exp Cell Res 261:159–165

    Article  PubMed  CAS  Google Scholar 

  18. Swinnen JV, Ulrix W, Heyns W, Verhoeven G (1997) Coordinate regulation of lipogenic gene expression by androgens: evidence for a cascade mechanism involving sterol regulatory element binding proteins. Proc Natl Acad Sci USA 94:12975–12980

    Article  PubMed  CAS  Google Scholar 

  19. Lacasa D, Le-Liepvre X, Ferre P, Dugail I (2001) Progesterone stimulates adipocyte determination and differentiation 1/sterol regulatory element-binding protein 1c gene expression. Potential mechanism for the lipogenic effect of progesterone in adipose tissue. J Biol Chem 276:11512–11516

    Article  PubMed  CAS  Google Scholar 

  20. Van-de-Sande T, De-Schrijver E, Heyns W, Verhoeven G, Swinnen JV (2002) Role of the phosphatidylinositol 3′-kinase/PTEN/Akt kinase pathway in the overexpression of fatty acid synthase in LNCaP prostate cancer cells. Cancer Res 62:642–646

    PubMed  CAS  Google Scholar 

  21. Pizer ES, Chrest FJ, DiGiuseppe JA, Han WF (1998) Pharmacological inhibitors of mammalian fatty acid synthase suppress DNA replication and induce apoptosis in tumor cell lines. Cancer Res 58:4611–4615

    PubMed  CAS  Google Scholar 

  22. Pizer ES, Wood FD, Heine HS, Romantsev FE, Pasternack GR, Kuhajda FP (1996) Inhibition of fatty acid synthesis delays disease progression in a xenograft model of ovarian cancer. Cancer Res 56:1189–1193

    PubMed  CAS  Google Scholar 

  23. Pizer ES, Jackisch C, Wood FD, Pasternack GR, Davidson NE, Kuhajda FP (1996) Inhibition of fatty acid synthesis induces programmed cell death in human breast cancer cells. Cancer Res 56:2745–2747

    PubMed  CAS  Google Scholar 

  24. Li JN, Gorospe M, Chrest FJ, Kumaravel TS, Evans MK, Han WF, Pizer ES (2001) Pharmacological inhibition of fatty acid synthase activity produces both cytostatic and cytotoxic effects modulated by p53. Cancer Res 61:1493–1499

    PubMed  CAS  Google Scholar 

  25. Liu X, Shi Y, Giranda VL, Luo Y (2006) Inhibition of the phosphatidylinositol 3-kinase/Akt pathway sensitizes MDA-MB468 human breast cancer cells to cerulenin-induced apoptosis. Mol Cancer Ther 5:494–501

    Article  PubMed  CAS  Google Scholar 

  26. Menendez JA, Lupu R, Colomer R (2004) Inhibition of tumor-associated fatty acid synthase hyperactivity induces synergistic chemosensitization of HER-2/neu-overexpressing human breast cancer cells to docetaxel (taxotere). Breast Cancer Res Treat 84:183–195

    Article  PubMed  CAS  Google Scholar 

  27. Menendez JA, Vellon L, Mehmi I, Oza BP, Ropero S, Colomer R, Lupu R (2004) Inhibition of fatty acid synthase (FAS) suppresses HER2/neu (erbB-2) oncogene overexpression in cancer cells. Proc Natl Acad Sci USA 101:10715–10720

    Article  PubMed  CAS  Google Scholar 

  28. Menendez JA, Colomer R, Lupu R (2004) Inhibition of tumor-associated fatty acid synthase activity enhances vinorelbine (Navelbine)-induced cytotoxicity and apoptotic cell death in human breast cancer cells. Oncol Rep 12:411–422

    PubMed  CAS  Google Scholar 

  29. Ohno R, Okada K, Masaoka T, Kuramoto A, Arima T, Yoshida Y, Ariyoshi H, Ichimaru M, Sasaki Y, Oguro M, Ito Y, Morishima Y, Yokomaku S, Ota K (1990) An early phase II study of CPT-l 1:a new derivative of camptothecin for the treatment of leukemia and lymphoma. J Clin Oncol 8:1907–1912

    PubMed  CAS  Google Scholar 

  30. Ma-suda N, Fukuoka M, Kusunoki Y, Matsui K, Takifuji N, Kudoh S, Negoro S, Nishioka M, Nakagawa K, Takada M (1992) CPT-l 1: a new derivative of camptothecin for the treatment of refractory or relapsed small-cell lung cancer. J Clin Oncol 10:1225–1229

    CAS  Google Scholar 

  31. Fukuoka M, Niitani H, Suzuki A, Motomiya M, Hasegawa K, Nishiwaki Y, Kuriyama T, Ariyoshi Y, Negoro S, Masuda N (1992) A phase II study of CPT-l I, a new derivative of camptothecin for previously untreated non-small-cell lung cancer. J Clin Oncol 10:16–20

    PubMed  CAS  Google Scholar 

  32. Shimada Y, Yoshino M, Wakui A, Nakao I, Futatsuki K, Sakata Y, Kambe M, Taguchi T, Ogawa N (1993) Phase II study of CPT-11, a new camptothecin derivative, in metastatic colorectal cancer. CPT-11 Gastrointestinal Cancer Study Group. J Clin Oncol 11:909–913

    PubMed  CAS  Google Scholar 

  33. Kawato Y, Aonuma M, Hirota Y, Kuga H, Sato K (1991) Intracellular roles of SN-38, a metabolite of the camptothecin derivative CPT-11, in the antitumor effect of CPT-11. Cancer Res 51:4187–4191

    PubMed  CAS  Google Scholar 

  34. Morris EJ, Geller HM (1996) Induction of neuronal apoptosis by camptothecin, an inhibitor of DNA topoisomerase i: evidence for cell cycle independent toxicity. J Cell Biol 134:757–770

    Article  PubMed  CAS  Google Scholar 

  35. Whitacre CM, Zborowska E, Willson JK, Berger NA (1999) Detection of poly(ADP-ribose) polymerase cleavage in response to treatment with topoisomerase I inhibitors: a potential surrogate end point to assess treatment effectiveness. Clin Cancer Res 5:665–672

    PubMed  CAS  Google Scholar 

  36. Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipid from animal tissues. J Biol Chem 226:497–502

    PubMed  CAS  Google Scholar 

  37. Kim N, Choe E (2012) Effects of monoacylglycerols on the oil oxidation of acidic water/perilla oil emulsion under light in the presence of chlorophyll. Food Sci Biotechnol 21:183–189

    Article  CAS  Google Scholar 

  38. Ikegami T, Ha L, Arimori K, Latham P, Kobayashi K, Ceryak S, Matsuzaki Y, Bouscarel B (2002) Intestinal alkalization as a possible preventive mechanism in irinotecan (CPT-11)-induced diarrhea. Cancer Res 62:179–187

    PubMed  CAS  Google Scholar 

  39. Hsiang YH, Liu LF (1988) Identification of mammalian topoisomerase I as an intracellular target of the anticancer drug camptothecin. Cancer Res 48:1722–1726

    PubMed  CAS  Google Scholar 

  40. Rysman E, Brusselmans K, Scheys K, Timmermans L, Derua R, Munck S, Van-Veldhoven PP, Waltregny D, Daniëls VW, Machiels J, Vanderhoydonc F, Smans K, Waelkens E, Verhoeven G, Swinnen JV (2010) De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Res 70:8117–8126

    Article  PubMed  CAS  Google Scholar 

  41. Suzuki K, Shono F, Kai H, Uno T, Uyeda M (2000) Inhibition of topoisomerases by fatty acids. J Enzyme Inhib 15:357–366

    Article  PubMed  CAS  Google Scholar 

  42. Yonezawa Y, Tsuzuki T, Eitsuka T, Miyazawa T, Hada T, Uryu K, Murakami-Nakai C, Ikawa H, Kuriyama I, Takemura M, Oshige M, Yoshida H, Sakaguchi K, Mizushina Y (2005) Inhibitory effect of conjugated eicosapentaenoic acid on human DNA topoisomerases I and II. Biochem Biophys 435:197–206

    Article  CAS  Google Scholar 

  43. Morita N, Nishida T, Tanaka M, Yano Y, Okuyama H (2005) Enhancement of polyunsaturated fatty acid production by cerulenin treatment in polyunsaturated fatty acid-producing bacteria. Biotechnol Lett 27:389–393

    Article  PubMed  CAS  Google Scholar 

  44. Mizushima T, Natori S, Sekimizu K (1992) Inhibition of Escherichia coli DNA topoisomerase I activity by phospholipids. Biochem J 285:503–506

    PubMed  CAS  Google Scholar 

  45. Wang HQ, Altomare DA, Skele KL, Poulikakos PI, Kuhajda FP, Di Cristofano A, Testa JR (2005) Positive feedback regulation between AKT activation and fatty acid synthase expression in ovarian carcinoma cells. Oncogene 24:3574–3582

    Article  PubMed  CAS  Google Scholar 

  46. Saga Y, Mizukami H, Suzuki M, Kohno T, Urabe M, Ozawa K, Sato I (2002) Overexpression of PTEN increases sensitivity to SN-38, an active metabolite of the topoisomerase I inhibitor irinotecan, in ovarian cancer cells. Clin Cancer Res 8:1248–1252

    PubMed  CAS  Google Scholar 

  47. Wang JC (2002) Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol 3:430–440

    Article  PubMed  CAS  Google Scholar 

  48. Hsiang YH, Lihou MG, Liu LF (1989) Arrest of replication forks by drug-stabilized topoisomerse I-DNA cleavable complexes as a mechanism of cell killing by camptothecin. Cancer Res 49:5077–5082

    PubMed  CAS  Google Scholar 

  49. Masumoto N, Nakano S, Esaki T, Fujishima H, Tatsumoto T, Niho Y (1995) Inhibition of cis-diamminedichloroplatinum(II)-induced DNA interstrand cross-link removal by 7-ethyl-10-hydroxy-camptothecin in HST-1 human squamous-carcinoma cells. Int J Cancer 62:70–75

    Article  PubMed  CAS  Google Scholar 

  50. Gálvez-Peralta M, Dai NT, Loegering DA, Flatten KS, Safgren SL, Wagner JM, Ames MM, Karnitz LM, Kaufmann SH (2008) Overcoming S-phase checkpoint-mediated resistance:sequence-dependent synergy of gemcitabine and 7-ethyl-10-hydroxycamptothecin (SN-38) in human carcinoma cell lines. Mol Pharmacol 74:724–735

    Article  PubMed  Google Scholar 

  51. Mullany S, Svingen PA, Kaufmann SH, Erlichman C (1998) Effect of adding the topoiosomerase I poison 7-ethyl-10-hydroxycamptothecin (SN-38) to 5-fluorouracil and floinic acid in HCT-8 cells: elevated dTTP pools and enhanced cytotoxicity. Cancer Chemother Pharmacol 42:391–399

    Article  PubMed  CAS  Google Scholar 

  52. Raymond E, Louvet C, Tournigand C, Coudray AM, Faivre S, De-Gramont A, Gespach C (2002) Pemetrexed disodium combined with oxaliplatin, SN38, or 5-fluorouracil, based on the quantitation of drug interactions in human HT29 colon cancer cells. Int J Oncol 21:361–367

    PubMed  CAS  Google Scholar 

  53. St-Amant C, Lussier S, Lehoux J, Laberge RM, Boissonneault G (2006) Altered phosphorylation of topoisomerase I following overexpression in an ovarian cancer cell line. Biochem Cell Biol 84:55–66

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a National Research Foundation of Korea Grant funded by the Korean Government (2011 0001262).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Hyun Yoo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10495_2012_776_MOESM1_ESM.tif

Supplementary material Fig. S1 a Molecular structure of cerulenin. b Synergism between cerulenin and SN-38. Additional cell lines (T98G, U373MG and Hep3B) were treated with 100 nM SN-38 alone, 25 µM cerulenin alone, or both for 48 h. Live cells were determined using a trypan blue exclusion assay after 48 h. c Immunofluorescent micrographs showing the sustained expression level of topoisomerase I. Cells were incubated with anti-human topoisomerase I antibody (Santa Cruz Biotechnology, Santa Cruz, CA) and then with FITC-conjugated secondary antibody. Fluorescent images were observed and analyzed under Zeiss LSM 510 laser-scanning confocal microscope (Zeiss, Goettingen, Germany). (TIFF 15368 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, N.Y., Lee, J.S., Yoo, K.S. et al. Fatty acid synthase inhibitor cerulenin inhibits topoisomerase I catalytic activity and augments SN-38-induced apoptosis. Apoptosis 18, 226–237 (2013). https://doi.org/10.1007/s10495-012-0776-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-012-0776-4

Keywords

Navigation