Skip to main content
Log in

Low concentrations of isothiocyanates protect mesenchymal stem cells from oxidative injuries, while high concentrations exacerbate DNA damage

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Isothiocyanates (ITCs) are molecules naturally present in many cruciferous vegetables (broccoli, black radish, daikon radish, and cauliflowers). Several studies suggest that cruciferous vegetable consumption may reduce cancer risk and slow the aging process. To investigate the effect of ITCs on cellular DNA damage, we evaluated the effects of two different ITCs [sulforaphane (SFN) and raphasatin (RPS)] on the biology of human mesenchymal stem cells (MSCs), which, in addition to their ability to differentiate into mesenchymal tissues, contribute to the homeostatic maintenance of many organs. The choice of SFN and RPS relies on two considerations: they are among the most popular cruciferous vegetables in the diet of western and eastern countries, respectively, and their bioactive properties may differ since they possess specific molecular moiety. Our investigation evidenced that MSCs incubated with low doses of SFN and RPS show reduced in vitro oxidative stress. Moreover, these cells are protected from oxidative damages induced by hydrogen peroxide, while no protection was evident following treatment with the UV ray of a double strand DNA damaging drug, such as doxorubicin. High concentrations of both ITCs induced cytotoxic effects in MSC cultures and further increased DNA damage induced by peroxides. In summary, our study suggests that ITCs, at low doses, may contribute to slowing the aging process related to oxidative DNA damage. Moreover, in cancer treatment, low doses of ITCs may be used as an adjuvant to reduce chemotherapy-induced oxidative stress, while high doses may synergize with anticancer drugs to promote cell DNA damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Valgimigli L, Iori R (2009) Antioxidant and pro-oxidant capacities of ITCs. Environ Mol Mutagen 50:222–237

    Article  PubMed  CAS  Google Scholar 

  2. Fimognari C, Nusse M, Berti F, Iori R, Cantelli-Forti G, Hrelia P (2003) Sulforaphane modulates cell cycle and apoptosis in transformed and non-transformed human T lymphocytes. Ann N Y Acad Sci 1010:393–398

    Article  PubMed  CAS  Google Scholar 

  3. Scholl C, Eshelman BD, Barnes DM, Hanlon PR (2011) Raphasatin is a more potent inducer of the detoxification enzymes than its degradation products. J Food Sci 76:C504–C511

    Article  PubMed  CAS  Google Scholar 

  4. Ahn YH, Hwang Y, Liu H et al (2010) Electrophilic tuning of the chemoprotective natural product sulforaphane. Proc Natl Acad Sci USA 107:9590–9595

    Article  PubMed  CAS  Google Scholar 

  5. Barillari J, Iori R, Papi A et al (2008) Kaiware Daikon (Raphanus sativus L.) extract: a naturally multipotent chemopreventive agent. J Agric Food Chem 56:7823–7830

    Article  PubMed  CAS  Google Scholar 

  6. Conaway CC, Wang CX, Pittman B et al (2005) Phenethyl isothiocyanate and sulforaphane and their N-acetylcysteine conjugates inhibit malignant progression of lung adenomas induced by tobacco carcinogens in A/J mice. Cancer Res 65:8548–8557

    Article  PubMed  CAS  Google Scholar 

  7. Cornblatt BS, Ye L, Dinkova-Kostova AT et al (2007) Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breast. Carcinogenesis 28:1485–1490

    Article  PubMed  CAS  Google Scholar 

  8. Dinkova-Kostova AT, Jenkins SN, Fahey JW et al (2006) Protection against UV-light-induced skin carcinogenesis in SKH-1 high-risk mice by sulforaphane-containing broccoli sprout extracts. Cancer Lett 240:243–252

    Article  PubMed  CAS  Google Scholar 

  9. Talalay P, Fahey JW, Healy ZR et al (2007) Sulforaphane mobilizes cellular defenses that protect skin against damage by UV radiation. Proc Natl Acad Sci USA 104:17500–17505

    Article  PubMed  CAS  Google Scholar 

  10. Zanichelli F, Capasso S, Cipollaro M et al (2012) Dose-dependent effects of R-sulforaphane isothiocyanate on the biology of human mesenchymal stem cells, at dietary amounts, it promotes cell proliferation and reduces senescence and apoptosis, while at anti-cancer drug doses, it has a cytotoxic effect. Age (Dordr) 34:281–293

    Article  CAS  Google Scholar 

  11. Son TG, Camandola S, Mattson MP (2008) Hormetic dietary phytochemicals. NeuroMol Med 10:236–246

    Article  CAS  Google Scholar 

  12. Beyer Nardi N, da Silva Meirelles L (2006) Mesenchymal stem cells: isolation, in vitro expansion and characterization. Handb Exp Pharmacol 174:249–282

    PubMed  Google Scholar 

  13. Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74

    Article  PubMed  CAS  Google Scholar 

  14. Sethe S, Scutt A, Stolzing A (2006) Aging of mesenchymal stem cells. Ageing Res Rev 5:91–116

    Article  PubMed  CAS  Google Scholar 

  15. Lombard DB, Chua KF, Mostoslavsky R, Franco S, Gostissa M, Alt FW (2005) DNA repair, genome stability, and aging. Cell 120:497–512

    Article  PubMed  CAS  Google Scholar 

  16. Roos WP, Kaina B (2006) DNA damage-induced cell death by apoptosis. Trends Mol Med 12:440–450

    Article  PubMed  CAS  Google Scholar 

  17. Fimognari C, Nusse M, Cesari R, Iori R, Cantelli-Forti G, Hrelia P (2002) Growth inhibition, cell-cycle arrest and apoptosis in human T-cell leukemia by the isothiocyanate sulforaphane. Carcinogenesis 23:581–586

    Article  PubMed  CAS  Google Scholar 

  18. Pochampally R (2008) Colony forming unit assays for MSCs. Methods Mol Biol 449:83–91

    PubMed  Google Scholar 

  19. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. CSHL Press, Cold Spring Harbor

    Google Scholar 

  20. Galderisi U, Di Bernardo G, Cipollaro M et al (1999) Induction of apoptosis and differentiation in neuroblastoma and astrocytoma cells by the overexpression of Bin1, a novel Myc interacting protein. J Cell Biochem 74:313–322

    Article  PubMed  CAS  Google Scholar 

  21. Conaway CC, Getahun SM, Liebes LL et al (2000) Disposition of glucosinolates and sulforaphane in humans after ingestion of steamed and fresh broccoli. Nutr Cancer 38:168–178

    Article  PubMed  CAS  Google Scholar 

  22. Hanlon N, Coldham N, Gielbert A, Sauer MJ, Ioannides C (2009) Repeated intake of broccoli does not lead to higher plasma levels of sulforaphane in human volunteers. Cancer Lett 284:15–20

    Article  PubMed  CAS  Google Scholar 

  23. Johnson IT (2002) Glucosinolates: bioavailability and importance to health. Int J Vitam Nutr Res 72:26–31

    Article  PubMed  CAS  Google Scholar 

  24. Mi L, Xiao Z, Hood BL et al (2008) Covalent binding to tubulin by isothiocyanates. A mechanism of cell growth arrest and apoptosis. J Biol Chem 283:22136–22146

    Article  PubMed  CAS  Google Scholar 

  25. Montaut S, Barillari J, Iori R, Rollin P (2010) Glucoraphasatin: chemistry, occurrence, and biological properties. Phytochemistry 71:6–12

    Article  PubMed  CAS  Google Scholar 

  26. Nitiss JL (2002) DNA topoisomerases in cancer chemotherapy: using enzymes to generate selective DNA damage. Curr Opin Investig Drugs 3:1512–1516

    PubMed  CAS  Google Scholar 

  27. Hoeijmakers JH (2001) Genome maintenance mechanisms for preventing cancer. Nature 411:366–374

    Article  PubMed  CAS  Google Scholar 

  28. Khanna KK, Jackson SP (2001) DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27:247–254

    Article  PubMed  CAS  Google Scholar 

  29. Ronen A, Glickman BW (2001) Human DNA repair genes. Environ Mol Mutagen 37:241–283

    Article  PubMed  CAS  Google Scholar 

  30. Sharpless NE, DePinho RA (2007) How stem cells age and why this makes us grow old. Nat Rev Mol Cell Biol 8:703–713

    Article  PubMed  CAS  Google Scholar 

  31. Galderisi U, Cipollaro M, Giordano A (2006) Stem cells and brain cancer. Cell Death Differ 13:5–11

    Article  PubMed  CAS  Google Scholar 

  32. Verhagen H, Coolen S, Duchateau G, Hamer M, Kyle J, Rechner A (2004) Assessment of the efficacy of functional food ingredients-introducing the concept “kinetics of biomarkers”. Mutat Res 551:65–78

    Article  PubMed  CAS  Google Scholar 

  33. Panis C, Herrera AC, Victorino VJ et al (2012) Oxidative stress and hematological profiles of advanced breast cancer patients subjected to paclitaxel or doxorubicin chemotherapy. Breast Cancer Res Treat 133:89–97

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umberto Galderisi.

Additional information

Fulvia Zanichelli and Stefania Capasso contributed equally to the research.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 48 kb)

Supplementary material 2 (DOC 69 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zanichelli, F., Capasso, S., Di Bernardo, G. et al. Low concentrations of isothiocyanates protect mesenchymal stem cells from oxidative injuries, while high concentrations exacerbate DNA damage. Apoptosis 17, 964–974 (2012). https://doi.org/10.1007/s10495-012-0740-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-012-0740-3

Keywords

Navigation