Skip to main content
Log in

ARTS binds to a distinct domain in XIAP-BIR3 and promotes apoptosis by a mechanism that is different from other IAP-antagonists

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

ARTS (Sept4_i2), is a pro-apoptotic protein localized at the mitochondria of living cells. In response to apoptotic signals, ARTS rapidly translocates to the cytosol where it binds and antagonizes XIAP to promote caspase activation. However, the mechanism of interaction between these two proteins and how it is regulated remained to be explored. In this study, we show that ARTS and XIAP bind directly to each other, as recombinant ARTS and XIAP proteins co-immunoprecipitate together. We also show that over expression of ARTS alone is sufficient to induce a strong down-regulation of XIAP protein levels and that this reduction occurs through the ubiquitin proteasome system (UPS). Using various deletion and mutation constructs of XIAP we show that ARTS specifically binds to the BIR3 domain in XIAP. Moreover, we found that ARTS binds to different sequences in BIR3 than other IAP antagonists such as SMAC/Diablo. Computational analysis comparing the location of the putative ARTS interface in BIR3 with the known interfaces of SMAC/Diablo and caspase 9 support our results indicating that ARTS interacts with residues in BIR3 that are different from those involved in binding SMAC/Diablo and caspase 9. We therefore suggest that ARTS binds and antagonizes XIAP in a way which is distinct from other IAP-antagonists to promote apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267(5203):1456–1462

    Article  PubMed  CAS  Google Scholar 

  2. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281(5381):1309–1312

    Article  PubMed  CAS  Google Scholar 

  3. Nicholson DW (1999) Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 6(11):1028–1042. doi:10.1038/sj.cdd.4400598

    Article  PubMed  CAS  Google Scholar 

  4. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281(5381):1312–1316

    Article  PubMed  CAS  Google Scholar 

  5. Yuan JY, Shaham S, Ledoux S, Ellis HM, Horvitz HR (1993) The C-elegans cell-death gene ced-3 encodes a protein similar to mammalian interleukin-1-beta-converting enzyme. Cell 75(4):641–652

    Article  PubMed  CAS  Google Scholar 

  6. Xue D, Shaham S, Horvitz HR (1996) The Caenorhabditis elegans cell-death protein CED-3 is a cysteine protease with substrate specificities similar to those of the human CPP32 protease. Genes Dev 10(9):1073–1083

    Article  PubMed  CAS  Google Scholar 

  7. Degterev A, Boyce M, Yuan J (2003) A decade of caspases. Oncogene 22(53):8543–8567. doi:10.1038/sj.onc.1207107

    Article  PubMed  CAS  Google Scholar 

  8. Shi Y (2002) Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 9(3):459–470

    Article  PubMed  CAS  Google Scholar 

  9. Deveraux QL, Leo E, Stennicke HR, Welsh K, Salvesen GS, Reed JC (1999) Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO J 18(19):5242–5251. doi:10.1093/emboj/18.19.5242

    Article  PubMed  CAS  Google Scholar 

  10. Roy N, Deveraux QL, Takahashi R, Salvesen GS, Reed JC (1997) The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J 16(23):6914–6925. doi:10.1093/emboj/16.23.6914

    Article  PubMed  CAS  Google Scholar 

  11. Salvesen GS, Duckett CS (2002) IAP proteins: blocking the road to death’s door. Nat Rev Mol Cell Biol 3(6):401–410. doi:10.1038/nrm830]

    Article  PubMed  CAS  Google Scholar 

  12. Deveraux QL, Reed JC (1999) IAP family proteins-suppressors of apoptosis. Genes Dev 13(3):239–252

    Article  PubMed  CAS  Google Scholar 

  13. Takahashi R, Deveraux Q, Tamm I, Welsh K, Assa-Munt N, Salvesen GS, Reed JC (1998) A single BIR domain of XIAP sufficient for inhibiting caspases. J Biol Chem 273(14):7787–7790

    Article  PubMed  CAS  Google Scholar 

  14. Srinivasula SM, Ashwell JD (2008) IAPs: what’s in a name? Mol Cell 30(2):123–135. doi:10.1016/j.molcel.2008.03.008

    Article  PubMed  CAS  Google Scholar 

  15. Hu S, Yang X (2003) Cellular inhibitor of apoptosis 1 and 2 are ubiquitin ligases for the apoptosis inducer Smac/DIABLO. J Biol Chem 278(12):10055–10060. doi:10.1074/jbc.M207197200

    Article  PubMed  CAS  Google Scholar 

  16. Schile AJ, Garcia-Fernandez M, Steller H (2008) Regulation of apoptosis by XIAP ubiquitin-ligase activity. Genes Dev 22(16):2256–2266. doi:10.1101/gad.1663108

    Article  PubMed  CAS  Google Scholar 

  17. Yang YL, Li XM (2000) The IAP family: endogenous caspase inhibitors with multiple biological activities. Cell Res 10(3):169–177. doi:10.1038/sj.cr.7290046

    Article  PubMed  CAS  Google Scholar 

  18. Liston P, Fong WG, Korneluk RG (2003) The inhibitors of apoptosis: there is more to life than Bcl2. Oncogene 22(53):8568–8580. doi:10.1038/sj.onc.1207101

    Article  PubMed  CAS  Google Scholar 

  19. Deveraux QL, Takahashi R, Salvesen GS, Reed JC (1997) X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388(6639):300–304. doi:10.1038/40901

    Article  PubMed  CAS  Google Scholar 

  20. Sun C, Cai M, Meadows RP, Xu N, Gunasekera AH, Herrmann J, Wu JC, Fesik SW (2000) NMR structure and mutagenesis of the third Bir domain of the inhibitor of apoptosis protein XIAP. J Biol Chem 275(43):33777–33781. doi:10.1074/jbc.M006226200

    Article  PubMed  CAS  Google Scholar 

  21. Chai J, Shiozaki E, Srinivasula SM, Wu Q, Datta P, Alnemri ES, Shi Y (2001) Structural basis of caspase-7 inhibition by XIAP. Cell 104(5):769–780

    Article  PubMed  CAS  Google Scholar 

  22. Riedl SJ, Renatus M, Schwarzenbacher R, Zhou Q, Sun C, Fesik SW, Liddington RC, Salvesen GS (2001) Structural basis for the inhibition of caspase-3 by XIAP. Cell 104(5):791–800

    Article  PubMed  CAS  Google Scholar 

  23. Shiozaki EN, Chai J, Rigotti DJ, Riedl SJ, Li P, Srinivasula SM, Alnemri ES, Fairman R, Shi Y (2003) Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell 11(2):519–527

    Article  PubMed  CAS  Google Scholar 

  24. Srinivasula SM, Hegde R, Saleh A, Datta P, Shiozaki E, Chai J, Lee RA, Robbins PD, Fernandes-Alnemri T, Shi Y, Alnemri ES (2001) A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 410(6824):112–116. doi:10.1038/35065125

    Article  PubMed  CAS  Google Scholar 

  25. Albeck JG, Burke JM, Spencer SL, Lauffenburger DA, Sorger PK (2008) Modeling a snap-action, variable-delay switch controlling extrinsic cell death. PLoS Biol 6(12):2831–2852. doi:10.1371/journal.pbio.0060299

    Article  PubMed  CAS  Google Scholar 

  26. Hao Z, Mak TW (2009) Type I and type II pathways of fas-mediated apoptosis are differentially controlled by XIAP. J Mol Cell Biol 2(2):63–64. doi:10.1093/jmcb/mjp034

    Article  PubMed  Google Scholar 

  27. Jost PJ, Grabow S, Gray D, McKenzie MD, Nachbur U, Huang DC, Bouillet P, Thomas HE, Borner C, Silke J, Strasser A, Kaufmann T (2009) XIAP discriminates between type I and type II FAS-induced apoptosis. Nature 460(7258):1035–1039. doi:10.1038/nature08229

    Article  PubMed  CAS  Google Scholar 

  28. Broemer M, Meier P (2009) Ubiquitin-mediated regulation of apoptosis. Trends Cell Biol 19(3):130–140. doi:10.1016/j.tcb.2009.01.004

    Article  PubMed  CAS  Google Scholar 

  29. Potts PR, Singh S, Knezek M, Thompson CB, Deshmukh M (2003) Critical function of endogenous XIAP in regulating caspase activation during sympathetic neuronal apoptosis. J Cell Biol 163(4):789–799. doi:10.1083/jcb.200307130

    Article  PubMed  CAS  Google Scholar 

  30. Goyal L, McCall K, Agapite J, Hartwieg E, Steller H (2000) Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO J 19(4):589–597. doi:10.1093/emboj/19.4.589

    Article  PubMed  CAS  Google Scholar 

  31. Ryoo HD, Bergmann A, Gonen H, Ciechanover A, Steller H (2002) Regulation of Drosophila IAP1 degradation and apoptosis by reaper and ubcD1. Nat Cell Biol 4(6):432–438. doi:10.1038/ncb795

    Article  PubMed  CAS  Google Scholar 

  32. Steller H (2008) Regulation of apoptosis in Drosophila. Cell Death Differ 15(7):1132–1138. doi:10.1038/cdd.2008.50

    Article  PubMed  CAS  Google Scholar 

  33. Galban S, Duckett CS (2010) XIAP as a ubiquitin ligase in cellular signaling. Cell Death Differ 17(1):54–60. doi:10.1038/cdd.2009.81

    Article  PubMed  CAS  Google Scholar 

  34. Du C, Fang M, Li Y, Li L, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102(1):33–42

    Article  PubMed  CAS  Google Scholar 

  35. Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE, Moritz RL, Simpson RJ, Vaux DL (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102(1):43–53

    Article  PubMed  CAS  Google Scholar 

  36. Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K, Takahashi R (2001) A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell 8(3):613–621

    Article  PubMed  CAS  Google Scholar 

  37. van Loo G, van Gurp M, Depuydt B, Srinivasula SM, Rodriguez I, Alnemri ES, Gevaert K, Vandekerckhove J, Declercq W, Vandenabeele P (2002) The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase-inhibitor XIAP and induces enhanced caspase activity. Cell Death Differ 9(1):20–26. doi:10.1038/sj.cdd.4400970

    Article  PubMed  Google Scholar 

  38. Hegde R, Srinivasula SM, Zhang Z, Wassell R, Mukattash R, Cilenti L, DuBois G, Lazebnik Y, Zervos AS, Fernandes-Alnemri T, Alnemri ES (2002) Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J Biol Chem 277(1):432–438. doi:10.1074/jbc.M109721200

    Article  PubMed  CAS  Google Scholar 

  39. Gottfried Y, Rotem A, Lotan R, Steller H, Larisch S (2004) The mitochondrial ARTS protein promotes apoptosis through targeting XIAP. EMBO J 23(7):1627–1635. doi:10.1038/sj.emboj.7600155

    Article  PubMed  CAS  Google Scholar 

  40. Larisch S, Yi Y, Lotan R, Kerner H, Eimerl S, Tony Parks W, Gottfried Y, Birkey Reffey S, de Caestecker MP, Danielpour D, Book-Melamed N, Timberg R, Duckett CS, Lechleider RJ, Steller H, Orly J, Kim SJ, Roberts AB (2000) A novel mitochondrial septin-like protein, ARTS, mediates apoptosis dependent on its P-loop motif. Nat Cell Biol 2(12):915–921. doi:10.1038/35046566

    Article  PubMed  CAS  Google Scholar 

  41. Liu Z, Sun C, Olejniczak ET, Meadows RP, Betz SF, Oost T, Herrmann J, Wu JC, Fesik SW (2000) Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature 408(6815):1004–1008. doi:10.1038/35050006

    Article  PubMed  CAS  Google Scholar 

  42. Wu G, Chai J, Suber TL, Wu JW, Du C, Wang X, Shi Y (2000) Structural basis of IAP recognition by Smac/DIABLO. Nature 408(6815):1008–1012. doi:10.1038/35050012

    Article  PubMed  CAS  Google Scholar 

  43. Martins LM (2002) The serine protease Omi/HtrA2: a second mammalian protein with a Reaper-like function. Cell Death Differ 9(7):699–701. doi:10.1038/sj.cdd.4401044

    Article  PubMed  CAS  Google Scholar 

  44. Verhagen AM, Kratina TK, Hawkins CJ, Silke J, Ekert PG, Vaux DL (2007) Identification of mammalian mitochondrial proteins that interact with IAPs via N-terminal IAP binding motifs. Cell Death Differ 14(2):348–357. doi:10.1038/sj.cdd.4402001

    Article  PubMed  CAS  Google Scholar 

  45. Vaux DL, Silke J (2003) Mammalian mitochondrial IAP binding proteins. Biochem Biophys Res Commun 304(3):499–504

    Article  PubMed  CAS  Google Scholar 

  46. Larisch S (2004) The ARTS connection: role of ARTS in apoptosis and cancer. Cell Cycle 3(8):1021–1023

    Article  PubMed  CAS  Google Scholar 

  47. Lotan R, Rotem A, Gonen H, Finberg JP, Kemeny S, Steller H, Ciechanover A, Larisch S (2005) Regulation of the proapoptotic ARTS protein by ubiquitin-mediated degradation. J Biol Chem 280(27):25802–25810. doi:10.1074/jbc.M501955200

    Article  PubMed  CAS  Google Scholar 

  48. Edison N, Zuri D, Maniv I, Lev T, Bornshtein G, Gottfried Y, Kemeny S, Carp Nov M-J, Garcia-Fernandez M, Kagan J, Larisch S (2011) The IAP-antagonist ARTS initiates caspase activation upstream of Cytochrome C and SMAC/Diablo.Cell Death Differ (submitted for publication)

  49. Garcia-Fernandez M, Kissel H, Brown S, Gorenc T, Schile AJ, Rafii S, Larisch S, Steller H (2010) Sept4/ARTS is required for stem cell apoptosis and tumor suppression. Genes Dev 24(20):2282–2293. doi:10.1101/gad.1970110

    Article  PubMed  CAS  Google Scholar 

  50. Kissel H, Georgescu MM, Larisch S, Manova K, Hunnicutt GR, Steller H (2005) The Sept4 septin locus is required for sperm terminal differentiation in mice. Dev Cell 8(3):353–364. doi:10.1016/j.devcel.2005.01.021

    Article  PubMed  CAS  Google Scholar 

  51. Burstein E, Ganesh L, Dick RD, van De Sluis B, Wilkinson JC, Klomp LW, Wijmenga C, Brewer GJ, Nabel GJ, Duckett CS (2004) A novel role for XIAP in copper homeostasis through regulation of MURR1. EMBO J 23(1):244–254. doi:10.1038/sj.emboj.7600031

    Article  PubMed  CAS  Google Scholar 

  52. Silke J, Hawkins CJ, Ekert PG, Chew J, Day CL, Pakusch M, Verhagen AM, Vaux DL (2002) The anti-apoptotic activity of XIAP is retained upon mutation of both the caspase 3- and caspase 9-interacting sites. J Cell Biol 157(1):115–124. doi:10.1083/jcb.200108085

    Article  PubMed  CAS  Google Scholar 

  53. Verhagen AM, Silke J, Ekert PG, Pakusch M, Kaufmann H, Connolly LM, Day CL, Tikoo A, Burke R, Wrobel C, Moritz RL, Simpson RJ, Vaux DL (2002) HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J Biol Chem 277(1):445–454. doi:10.1074/jbc.M109891200

    Article  PubMed  CAS  Google Scholar 

  54. Berman HM, Bhat TN, Bourne PE, Feng Z, Gilliland G, Weissig H, Westbrook J (2000) The Protein Data Bank and the challenge of structural genomics. Nat Struct Biol 7(Suppl):957–959. doi:10.1038/80734

    Article  PubMed  CAS  Google Scholar 

  55. Eckelman BP, Salvesen GS (2006) The human anti-apoptotic proteins cIAP1 and cIAP2 bind but do not inhibit caspases. J Biol Chem 281(6):3254–3260. doi:10.1074/jbc.M510863200

    Article  PubMed  CAS  Google Scholar 

  56. Hunter AM, LaCasse EC, Korneluk RG (2007) The inhibitors of apoptosis (IAPs) as cancer targets. Apoptosis 12(9):1543–1568. doi:10.1007/s10495-007-0087-3

    Article  PubMed  CAS  Google Scholar 

  57. Tamm I, Kornblau SM, Segall H, Krajewski S, Welsh K, Kitada S, Scudiero DA, Tudor G, Qui YH, Monks A, Andreeff M, Reed JC (2000) Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin Cancer Res 6(5):1796–1803

    PubMed  CAS  Google Scholar 

  58. Harlin H, Reffey SB, Duckett CS, Lindsten T, Thompson CB (2001) Characterization of XIAP-deficient mice. Mol Cell Biol 21(10):3604–3608. doi:10.1128/MCB.21.10.3604-3608.2001

    Article  PubMed  CAS  Google Scholar 

  59. Elhasid R, Sahar D, Merling A, Zivony Y, Rotem A, Ben-Arush M, Izraeli S, Bercovich D, Larisch S (2004) Mitochondrial pro-apoptotic ARTS protein is lost in the majority of acute lymphoblastic leukemia patients. Oncogene 23(32):5468–5475. doi:10.1038/sj.onc.1207725

    Article  PubMed  CAS  Google Scholar 

  60. Okada H, Suh WK, Jin J, Woo M, Du C, Elia A, Duncan GS, Wakeham A, Itie A, Lowe SW, Wang X, Mak TW (2002) Generation and characterization of Smac/DIABLO-deficient mice. Mol Cell Biol 22(10):3509–3517

    Article  PubMed  CAS  Google Scholar 

  61. Jones JM, Datta P, Srinivasula SM, Ji W, Gupta S, Zhang Z, Davies E, Hajnoczky G, Saunders TL, Van Keuren ML, Fernandes-Alnemri T, Meisler MH, Alnemri ES (2003) Loss of Omi mitochondrial protease activity causes the neuromuscular disorder of mnd2 mutant mice. Nature 425(6959):721–727. doi:10.1038/nature02052

    Article  PubMed  CAS  Google Scholar 

  62. Martins LM, Morrison A, Klupsch K, Fedele V, Moisoi N, Teismann P, Abuin A, Grau E, Geppert M, Livi GP, Creasy CL, Martin A, Hargreaves I, Heales SJ, Okada H, Brandner S, Schulz JB, Mak T, Downward J (2004) Neuroprotective role of the Reaper-related serine protease HtrA2/Omi revealed by targeted deletion in mice. Mol Cell Biol 24(22):9848–9862. doi:10.1128/MCB.24.22.9848-9862.2004

    Article  PubMed  CAS  Google Scholar 

  63. Liston P, Fong WG, Kelly NL, Toji S, Miyazaki T, Conte D, Tamai K, Craig CG, McBurney MW, Korneluk RG (2001) Identification of XAF1 as an antagonist of XIAP anti-Caspase activity. Nat Cell Biol 3(2):128–133. doi:10.1038/35055027

    Article  PubMed  CAS  Google Scholar 

  64. Burri L, Strahm Y, Hawkins CJ, Gentle IE, Puryer MA, Verhagen A, Callus B, Vaux D, Lithgow T (2005) Mature DIABLO/Smac is produced by the IMP protease complex on the mitochondrial inner membrane. Mol Biol Cell 16(6):2926–2933. doi:10.1091/mbc.E04-12-1086

    Article  PubMed  CAS  Google Scholar 

  65. Vande Walle L, Lamkanfi M, Vandenabeele P (2008) The mitochondrial serine protease HtrA2/Omi: an overview. Cell Death Differ 15(3):453–460. doi:10.1038/sj.cdd.4402291

    Article  Google Scholar 

  66. Yang QH, Du C (2004) Smac/DIABLO selectively reduces the levels of c-IAP1 and c-IAP2 but not that of XIAP and livin in HeLa cells. J Biol Chem 279(17):16963–16970. doi:10.1074/jbc.M401253200

    Article  PubMed  CAS  Google Scholar 

  67. Varfolomeev E, Blankenship JW, Wayson SM, Fedorova AV, Kayagaki N, Garg P, Zobel K, Dynek JN, Elliott LO, Wallweber HJ, Flygare JA, Fairbrother WJ, Deshayes K, Dixit VM, Vucic D (2007) IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell 131(4):669–681. doi:10.1016/j.cell.2007.10.030

    Article  PubMed  CAS  Google Scholar 

  68. Vince JE, Wong WW, Khan N, Feltham R, Chau D, Ahmed AU, Benetatos CA, Chunduru SK, Condon SM, McKinlay M, Brink R, Leverkus M, Tergaonkar V, Schneider P, Callus BA, Koentgen F, Vaux DL, Silke J (2007) IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 131(4):682–693. doi:10.1016/j.cell.2007.10.037

    Article  PubMed  CAS  Google Scholar 

  69. Morizane Y, Honda R, Fukami K, Yasuda H (2005) X-linked inhibitor of apoptosis functions as ubiquitin ligase toward mature caspase-9 and cytosolic Smac/DIABLO. J Biochem 137(2):125–132. doi:10.1093/jb/mvi029

    Article  PubMed  CAS  Google Scholar 

  70. Yang Y, Fang S, Jensen JP, Weissman AM, Ashwell JD (2000) Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 288(5467):874–877

    Article  PubMed  CAS  Google Scholar 

  71. Yoo SJ, Huh JR, Muro I, Yu H, Wang L, Wang SL, Feldman RM, Clem RJ, Muller HA, Hay BA (2002) Hid, Rpr and Grim negatively regulate DIAP1 levels through distinct mechanisms. Nat Cell Biol 4(6):416–424. doi:10.1038/ncb793

    Article  PubMed  CAS  Google Scholar 

  72. Garrison JB, Correa RG, Gerlic M, Yip KW, Krieg A, Tamble CM, Shi R, Welsh K, Duggineni S, Huang Z, Ren K, Du C, Reed JC (2010) ARTS and Siah collaborate in a pathway for XIAP degradation. Mol Cell 41(1):107–116. doi:10.1016/j.molcel.2010.12.002

    Article  PubMed  Google Scholar 

  73. Mace PD, Linke K, Feltham R, Schumacher FR, Smith CA, Vaux DL, Silke J, Day CL (2008) Structures of the cIAP2 RING domain reveal conformational changes associated with ubiquitin-conjugating enzyme (E2) recruitment. J Biol Chem 283(46):31633–31640. doi:10.1074/jbc.M804753200

    Article  PubMed  CAS  Google Scholar 

  74. Meng EC, Pettersen EF, Couch GS, Huang CC, Ferrin TE (2006) Tools for integrated sequence-structure analysis with UCSF Chimera. BMC Bioinformatics 7:339. doi:10.1186/1471-2105-7-339

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Herman Steller, John Silke, Colin Duckett, Chunying Du and Krishnaraj Rajalingam for generously providing us with constructs, antibodies and MEFs used in this manuscript. This work was supported by funds from US Israel Binational Science Foundation (BSF) grant# 2003085 (to S.L), Israel Science Foundation (ISF) Grant # 1264/06 (to S.L) and a grant from Israel Cancer Association (ICA) (to S.L).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarit Larisch.

Additional information

Bavat Bornstein and Yossi Gottfried contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bornstein, B., Gottfried, Y., Edison, N. et al. ARTS binds to a distinct domain in XIAP-BIR3 and promotes apoptosis by a mechanism that is different from other IAP-antagonists. Apoptosis 16, 869–881 (2011). https://doi.org/10.1007/s10495-011-0622-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-011-0622-0

Keywords

Navigation