Skip to main content

Advertisement

Log in

Lentiviral shRNA silencing of CHOP inhibits apoptosis induced by cyclic stretch in rat annular cells and attenuates disc degeneration in the rats

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The expression of CHOP (C/EBP homologous protein), an apoptosis regulated gene, increases during endoplasmic reticulum (ER) stress induced by cyclic stretch and leads to rat AF cells apoptosis. However, whether the suppression of CHOP can inhibit apoptosis and attenuates disc degeneration by cyclic stretch remains unclear. The aim of this study was to evaluate the suppressive effects of lentiviral CHOP shRNA on apoptosis induced by cyclic stretch in rat annulus fibrosus (AF) cells in vitro and disc degeneration of rat lumber spine in vivo. Lentiviral CHOP shRNA was constructed and introduced into AF cells. After stretched by the Flexcell Tension Plus system with 20% elongation for 36 h, silencing of the CHOP gene was identified by RT-PCR and Western blot. Inhibition of apoptosis was detected by flow cytometry, and nuclei morphologic changes were visualized by Hoechst 33258 staining. The effect of CHOP shRNA on disc degeneration was determined in vivo by using a rat model. At 7 weeks after intradiscal injection of the control or CHOP shRNA in the L4/L5 and L5/L6 discs, disc degeneration was assessed by X-ray examination, magnetic resonance imaging (MRI) assessment, and HE and TUNEL staining. A significant decrease in CHOP mRNA and protein expression was detected in AF cells with CHOP shRNA transfection after 36 h stretch. There was a significant decrease in apoptotic incidence in cells treated with CHOP shRNA, which was parallel to the expression of CHOP. Injection of CHOP shRNA in vivo resulted in the improvement in MRI and histologic score, and decrease in the apoptosis in the disc. No significant change in disc height was observed. In conclusion, a novel lentiviral vector expressing CHOP shRNA efficiently inhibits apoptosis in rat AF cells by silencing CHOP expression. In a rat model, intradiscal injection of CHOP shRNA induces the suppression of disc degeneration. The therapeutic effects of lentiviral CHOP shRNA should be further explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gruber HE, Hanley EN Jr (1998) Analysis of aging and degeneration of the human intervertebral disc. Comparison of surgical specimens with normal controls. Spine 23:751–757

    Article  PubMed  CAS  Google Scholar 

  2. Ahsan R, Tajima N, Chosa E, Sugamata M, Sumida M, Hamada M (2001) Biochemical and morphological changes in herniated human intervertebral disc. J Orthop Sci 6:510–518

    Article  PubMed  CAS  Google Scholar 

  3. Park JB, Kim KW, Han CW, Chang H (2001) Expression of Fas receptor on disc cells in herniated lumbar disc tissue. Spine 26:142–146

    Article  PubMed  CAS  Google Scholar 

  4. Ariga K, Yonenobu K, Nakase T, Hosono N, Okuda S, Meng W et al (2003) Mechanical stress-induced apoptosis of endplate chondrocytes in organ-cultured mouse intervertebral discs: an ex vivo study. Spine 28:1528–1533

    PubMed  Google Scholar 

  5. Court C, Colliou OK, Chin JR, Liebenberg E, Bradford DS, Lotz JC (2001) The effect of static in vivo bending on the murine intervertebral disc. Spine J 1:239–245

    Article  PubMed  CAS  Google Scholar 

  6. Lotz JC, Chin JR (2000) Intervertebral disc cell death is dependent on the magnitude and duration of spinal loading. Spine 25:1477–1483

    Article  PubMed  CAS  Google Scholar 

  7. Lotz JC, Colliou OK, Chin JR, Duncan NA, Liebenberg E (1998) Compression-induced degeneration of the intervertebral disc: an in vivo mouse model and finite-element study. Spine 23:2493–2506

    Article  PubMed  CAS  Google Scholar 

  8. Rannou F, Lee TS, Zhou RH, Chin J, Lotz JC, Mayoux-Benhamou MA et al (2004) Intervertebral disc degeneration: the role of the mitochondrial pathway in annulus fibrosus cell apoptosis induced by overload. Am J Pathol 164:915–924

    Article  PubMed  CAS  Google Scholar 

  9. Walsh AJ, Lotz JC (2004) Biological response of the intervertebral disc to dynamic loading. J Biomech 37:329–337

    Article  PubMed  Google Scholar 

  10. Park JB, Park IC, Park SJ, Jin HO, Lee JK, Riew KD (2006) Anti-apoptotic effects of caspase inhibitors on rat intervertebral disc cells. J Bone Joint Surg Am 88:771–779

    Article  PubMed  Google Scholar 

  11. Zhang YH, Zhao CQ, Jiang LS, Dai LY (2011) Cyclic stretch-induced apoptosis in rat annulus fibrosus cells is mediated in part by endoplasmic reticulum stress through nitric oxide production. Eur Spine J 2011 Feb 20 [Epub ahead of print]

  12. Chen J, Qin J, Liu X, Han Y, Yang Z, Chang X et al (2008) Nitric oxide-mediated neuronal apoptosis in rats with recurrent febrile seizures through endoplasmic reticulum stress pathway. Neurosci Lett 443:134–139

    Article  PubMed  CAS  Google Scholar 

  13. Rodella LF, Ricci F, Borsani E, Stacchiotti A, Foglio E, Favero G et al (2008) Aluminium exposure induces Alzheimer’s disease-like histopathological alterations in mouse brain. Histol Histopathol 23:433–439

    PubMed  CAS  Google Scholar 

  14. Wang HQ, Takahashi R (2007) Expanding insights on the involvement of endoplasmic reticulum stress in Parkinson’s disease. Antioxid Redox Signal 9:553–561

    Article  PubMed  CAS  Google Scholar 

  15. Kuhn K, D’Lima DD, Hashimoto S, Lotz M (2004) Cell death in cartilage. Osteoarthr Cartil 12:1–16

    Article  PubMed  CAS  Google Scholar 

  16. Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11:381–389

    Article  PubMed  CAS  Google Scholar 

  17. Wang XZ, Lawson B, Brewer JW, Zinszner H, Sanjay A, Mi LJ et al (1996) Signals from the stressed endoplasmic reticulum induce C/EBP-homologous protein (CHOP/GADD153). Mol Cell Biol 16:4273–4280

    PubMed  CAS  Google Scholar 

  18. McCullough KD, Martindale JL, Klotz LO, Aw TY, Holbrook NJ (2001) Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 21:1249–1259

    Article  PubMed  CAS  Google Scholar 

  19. Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H et al (1998) CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 12:982–995

    Article  PubMed  CAS  Google Scholar 

  20. Cheng WP, Hung HF, Wang BW, Shyu KG (2008) The molecular regulation of GADD153 in apoptosis of cultured vascular smooth muscle cells by cyclic mechanical stretch. Cardiovasc Res 77:551–559

    Article  PubMed  CAS  Google Scholar 

  21. Rasmussen S, Krum-Moller DS, Lauridsen LR, Jensen SE, Mandoe H, Gerlif C et al (2008) Epidural steroid following discectomy for herniated lumbar disc reduces neurological impairment and enhances recovery: a randomized study with two-year follow-up. Spine 33:2028–2033

    Article  PubMed  Google Scholar 

  22. Olah M, Molnar L, Dobai J, Olah C, Feher J, Bender T (2008) The effects of weightbath traction hydrotherapy as a component of complex physical therapy in disorders of the cervical and lumbar spine: a controlled pilot study with follow-up. Rheumatol Int 28:749–756

    Article  PubMed  Google Scholar 

  23. Pomerantz SR, Hirsch JA (2006) Intradiscal therapies for discogenic pain. Semin Musculoskelet Radiol 10:125–135

    Article  PubMed  Google Scholar 

  24. Zhang Y, An HS, Tannoury C, Thonar EJ, Freedman MK, Anderson DG (2008) Biological treatment for degenerative disc disease: implications for the field of physical medicine and rehabilitation. Am J Phys Med Rehabil 87:694–702

    Article  PubMed  Google Scholar 

  25. Nishida K, Kang JD, Gilbertson LG, Moon SH, Suh JK, Vogt MT et al (1999) Modulation of the biologic activity of the rabbit intervertebral disc by gene therapy: an in vivo study of adenovirus-mediated transfer of the human transforming growth factor beta 1 encoding gene. Spine 24:2419–2425

    Article  PubMed  CAS  Google Scholar 

  26. Paul R, Haydon RC, Cheng H, Ishikawa A, Nenadovich N, Jiang W et al (2003) Potential use of Sox9 gene therapy for intervertebral degenerative disc disease. Spine 28:755–763

    PubMed  Google Scholar 

  27. Yoon ST, Park JS, Kim KS, Li J, Attallah-Wasif ES, Hutton WC et al (2004) LMP-1 upregulates intervertebral disc cell production of proteoglycans and BMPs in vitro and in vivo. Spine 29:2603–2611

    Article  PubMed  Google Scholar 

  28. Wallach CJ, Sobajima S, Watanabe Y, Kim JS, Georgescu HI, Robbins P et al (2003) Gene transfer of the catabolic inhibitor TIMP-1 increases measured proteoglycans in cells from degenerated human intervertebral discs. Spine 28:2331–2337

    Article  PubMed  Google Scholar 

  29. Le Maitre CL, Hoyland JA, Freemont AJ (2007) Interleukin-1 receptor antagonist delivered directly and by gene therapy inhibits matrix degradation in the intact degenerate human intervertebral disc: an in situ zymographic and gene therapy study. Arthritis Res Ther 9:R83

    Article  PubMed  Google Scholar 

  30. Nishida K, Suzuki T, Kakutani K, Yurube T, Maeno K, Kurosaka M et al (2008) Gene therapy approach for disc degeneration and associated spinal disorders. Eur Spine J 17(Suppl 4):459–466

    Article  PubMed  Google Scholar 

  31. Fu HY, Minamino T, Tsukamoto O, Sawada T, Asai M, Kato H et al (2008) Overexpression of endoplasmic reticulum-resident chaperone attenuates cardiomyocyte death induced by proteasome inhibition. Cardiovasc Res 79:600–610

    Article  PubMed  CAS  Google Scholar 

  32. Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553

    Article  PubMed  CAS  Google Scholar 

  33. Rubinson DA, Dillon CP, Kwiatkowski AV, Sievers C, Yang L, Kopinja J et al (2003) A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 33:401–406

    Article  PubMed  CAS  Google Scholar 

  34. Rannou F, Poiraudeau S, Foltz V, Boiteux M, Corvol M, Revel M (2000) Monolayer anulus fibrosus cell cultures in a mechanically active environment: local culture condition adaptations and cell phenotype study. J Lab Clin Med 136:412–421

    Article  PubMed  CAS  Google Scholar 

  35. Wang YJ, Shi Q, Lu WW, Cheung KC, Darowish M, Li TF et al (2006) Cervical intervertebral disc degeneration induced by unbalanced dynamic and static forces: a novel in vivo rat model. Spine 31:1532–1538

    Article  PubMed  Google Scholar 

  36. Rousseau MA, Bass EC, Lotz JC (2004) Ventral approach to the lumbar spine of the Sprague–Dawley rat. Lab Anim (NY) 33:43–45

    Article  Google Scholar 

  37. Nishida K, Doita M, Takada T, Kakutani K, Miyamoto H, Shimomura T et al (2006) Sustained transgene expression in intervertebral disc cells in vivo mediated by microbubble-enhanced ultrasound gene therapy. Spine 31:1415–1419

    Article  PubMed  Google Scholar 

  38. Masuda K, Aota Y, Muehleman C, Imai Y, Okuma M, Thonar EJ et al (2005) A novel rabbit model of mild, reproducible disc degeneration by an anulus needle puncture: correlation between the degree of disc injury and radiological and histological appearances of disc degeneration. Spine 30:5–14

    PubMed  Google Scholar 

  39. Nishimura K, Mochida J (1998) Percutaneous reinsertion of the nucleus pulposus. An experimental study. Spine 23:1531–1539

    Article  PubMed  CAS  Google Scholar 

  40. Zhao CQ, Zhang YH, Jiang SD, Jiang LS, Dai LY (2010) Both endoplasmic reticulum and mitochondria are involved in disc cell apoptosis and intervertebral disc degeneration in rats. Age 32:161–177

    Article  PubMed  CAS  Google Scholar 

  41. Oyadomari S, Takeda K, Takiguchi M, Gotoh T, Matsumoto M, Wada I et al (2001) Nitric oxide-induced apoptosis in pancreatic beta cells is mediated by the endoplasmic reticulum stress pathway. Proc Natl Acad Sci USA 98:10845–10850

    Article  PubMed  CAS  Google Scholar 

  42. Seki S, Asanuma-Abe Y, Masuda K, Kawaguchi Y, Asanuma K, Muehleman C et al (2009) Effect of small interference RNA (siRNA) for ADAMTS5 on intervertebral disc degeneration in the rabbit anular needle-puncture model. Arthritis Res Ther 11:R166

    Article  PubMed  Google Scholar 

  43. Manjunath N, Wu H, Subramanya S, Shankar P (2009) Lentiviral delivery of short hairpin RNAs. Adv Drug Deliv Rev 61:732–745

    Article  PubMed  CAS  Google Scholar 

  44. Masuda K, Imai Y, Okuma M, Muehleman C, Nakagawa K, Akeda K et al (2006) Osteogenic protein-1 injection into a degenerated disc induces the restoration of disc height and structural changes in the rabbit anular puncture model. Spine 31:742–754

    Article  PubMed  Google Scholar 

  45. Du W, Jiang P, Li N, Mei Y, Wang X, Wen L et al (2009) Suppression of p53 activity by Siva1. Cell Death Differ 16:1493–1504

    Article  PubMed  CAS  Google Scholar 

  46. Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D (2002) Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295:868–872

    Article  PubMed  CAS  Google Scholar 

  47. Lai Z, Brady RO (2002) Gene transfer into the central nervous system in vivo using a recombinant lentivirus vector. J Neurosci Res 67:363–371

    Article  PubMed  CAS  Google Scholar 

  48. Sapru MK, Yates JW, Hogan S, Jiang L, Halter J, Bohn MC (2006) Silencing of human alpha-synuclein in vitro and in rat brain using lentiviral-mediated RNAi. Exp Neurol 198:382–390

    Article  PubMed  CAS  Google Scholar 

  49. Alini M, Eisenstein SM, Ito K, Little C, Kettler AA, Masuda K et al (2008) Are animal models useful for studying human disc disorders/degeneration? Eur Spine J 17:2–19

    Article  PubMed  Google Scholar 

  50. Moon SH, Nishida K, Gilbertson LG, Lee HM, Kim H, Hall RA et al (2008) Biologic response of human intervertebral disc cells to gene therapy cocktail. Spine 33:1850–1855

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (U1032001, 81000793, 81071500) and Science and Technology Commission of Shanghai Municipality (09411953000).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Yang Dai.

Additional information

Yue-Hui Zhang and Chang-Qing Zhao contribute equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, YH., Zhao, CQ., Jiang, LS. et al. Lentiviral shRNA silencing of CHOP inhibits apoptosis induced by cyclic stretch in rat annular cells and attenuates disc degeneration in the rats. Apoptosis 16, 594–605 (2011). https://doi.org/10.1007/s10495-011-0596-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-011-0596-y

Keywords

Navigation