Skip to main content

Advertisement

Log in

Ku70 and Rad51 vary in their importance for the repair of doxorubicin- versus etoposide-induced DNA damage

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

For DNA targeting anticancer drugs, cellular DNA repair mechanisms may cause resistance and hamper the therapeutic outcome. DNA damage induced by topoisomerase IIα inhibitors like etoposide and anthracyclines, which are a mainstay of cancer therapy, is also repaired in many cell types, but the impact and precise mechanisms of this repair are still obscure. To investigate the DNA damage response of human adenocarcinoma HT29-cells to doxorubicin and to compare the involvement of Ku70 and Rad51 in the repair of doxorubicin- versus etoposide-induced DNA damage, we assessed cell cycle distribution and cell death, DNA damage, proteins relevant for repair by homologous recombination and non-homologous end-joining, and clonogenicity following exposure to doxorubicin at clinically achievable concentrations. Also, we assessed changes in the repair kinetics after siRNA-mediated attenuation of Ku70 or Rad51 expression. We found that exposure to doxorubicin for 24 h induced a substantial amount of DNA damage that was largely repaired when doxorubicin was removed and the cells were maintained in drug-free medium. Nevertheless, a pronounced G2/M arrest occurred at times when repair was maximal. This was followed by a distinct increase in cell death and loss of clonogenicity. In this regard, responses to doxorubicin and etoposide were similar. However, distinct differences in the repair process following doxorubicin versus etoposide were seen in concentration dependency, time-course and requirement of Ku70 and Rad51 proteins. In spite of the shared molecular target of doxorubicin and etoposide, DNA lesions induced by these compounds are repaired differently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jeggo PA, Lobrich M (2006) Contribution of DNA repair and cell cycle checkpoint arrest to the maintenance of genomic stability. DNA Repair (Amst) 5:1192–1198. doi:10.1016/j.dnarep.2006.05.011

    Article  CAS  Google Scholar 

  2. Rothkamm K, Kuhne M, Jeggo PA, Lobrich M (2001) Radiation-induced genomic rearrangements formed by nonhomologous end-joining of DNA double-strand breaks. Cancer Res 61:3886–3893

    PubMed  CAS  Google Scholar 

  3. Zhang Y, Rowley JD (2006) Chromatin structural elements and chromosomal translocations in leukemia. DNA Repair (Amst) 5:1282–1297. doi:10.1016/j.dnarep.2006.05.020

    Article  CAS  Google Scholar 

  4. Schonn I, Hennesen J, Dartsch DC (2010) Cellular responses to etoposide: cell death despite cell cycle arrest and repair of DNA damage. Apoptosis 15:162–172. doi:10.1007/s10495-009-0440-9

    Article  PubMed  CAS  Google Scholar 

  5. Hande K (1998) Etoposide: four decades of development of a topoisomerase II inhibitor. Eur J Cancer 34:1514–1521. doi:10.1016/S0959-8049(98)00228-7

    Article  PubMed  CAS  Google Scholar 

  6. Liu LF, Rowe TC, Yang L, Tewey KM, Chen GL (1983) Cleavage of DNA by mammalian DNA topoisomerase II. J Biol Chem 258:15365–15370

    PubMed  CAS  Google Scholar 

  7. Capranico G, Binaschi M, Borgnetto M, Zunino F, Palumbo M (1997) A protein-mediated mechanism for the DNA sequence-specific action of topoisomerase II poisons. TiPS 18:323–329

    PubMed  CAS  Google Scholar 

  8. Binaschi M, Capranico G, Dal Bo L, Zunino F (1997) Relationship between lethal effects and topoisomerase II-mediated double-stranded DNA breaks produced by anthracyclines with different sequence specificity. Mol Pharmacol 51:1053–1059

    PubMed  CAS  Google Scholar 

  9. Zunino F, Capranico G (1990) DNA topoisomerase II as the primary target of anti-tumor anthracyclines. Anticancer Drug Des 5:307–317

    PubMed  CAS  Google Scholar 

  10. Gewirtz DA (1999) A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 57:727–741

    Article  PubMed  CAS  Google Scholar 

  11. Coldwell K, Cutts SM, Ognibene TJ, Henderson PT, Phillips DR (2010) Detection of adriamycin-DNA adducts by accelerator mass spectrometry. Methods Mol Biol 613:103–118. doi:10.1007/978-1-60327-418-0_7

    Article  PubMed  CAS  Google Scholar 

  12. Tapiero H, Nguyen-Ba G, Lampidis TJ (1994) Cross resistance relevance of the chemical structure of different anthracyclines in multidrug resistant cells. Pathol Biol (Paris) 42:328–337

    CAS  Google Scholar 

  13. Blasiak J, Widera K, Pertynski T (2003) Hyperthermia can differentially modulate the repair of doxorubicin-damaged DNA in normal and cancer cells. Acta Biochim Pol 50:191–195

    PubMed  CAS  Google Scholar 

  14. Dartsch DC, Gieseler F (2007) Repair of idarubicin-induced DNA damage: a cause of resistance? DNA Repair (Amst) 6:1618–1628. doi:10.1016/j.dnarep.2007.05.007

    Article  CAS  Google Scholar 

  15. Gieseler F, Nussler V, Brieden T, Kunze J, Valsamas S (1998) Intracellular pharmacokinetics of anthracyclines in human leukemia cells: correlation of DNA-binding with apoptotic cell death. Int J Clin Pharmacol Ther 36:25–28

    PubMed  CAS  Google Scholar 

  16. Maniar N, Krishan A, Israel M, Samy TS (1988) Anthracycline-induced DNA breaks and resealing in doxorubicin-resistant murine leukemic P388 cells. Biochem Pharmacol 37:1763–1772

    Article  CAS  Google Scholar 

  17. Zhijian C, Xiaoxue L, Yezhen L, Shijie C, Lifen J, Jianlin L, Deqiang L, Jiliang H (2010) Impact of 1.8-GHz radiofrequency radiation (RFR) on DNA damage and repair induced by doxorubicin in human B-cell lymphoblastoid cells. Mutat Res 695:16–21. doi:10.1016/j.mrgentox.2009.10.001

    PubMed  Google Scholar 

  18. D’Arpa P, Beardmore C, Liu L (1990) Involvement of nucleic acid synthesis in cell killing mechanisms of topoisomerase poisons. Cancer Res 50:6919–6924

    PubMed  Google Scholar 

  19. Haber JE (2000) Partners and pathways repairing a double-strand break. Trends Genet 16:259–264

    Article  PubMed  CAS  Google Scholar 

  20. Iliakis G (2009) Backup pathways of NHEJ in cells of higher eukaryotes: cell cycle dependence. Radiother Oncol 92:310–315. doi:10.1016/j.radonc.2009.06.024

    Article  CAS  Google Scholar 

  21. Wyman C, Warmerdam DO, Kanaar R (2008) From DNA end chemistry to cell-cycle response: the importance of structure, even when it’s broken. Mol Cell 30:5–6. doi:10.1016/j.molcel.2008.03.007

    Article  PubMed  CAS  Google Scholar 

  22. Connelly JC, Leach DR (2004) Repair of DNA covalently linked to protein. Mol Cell 13:307–316

    Article  PubMed  CAS  Google Scholar 

  23. Zhang A, Lyu YL, Lin CP, Zhou N, Azarova AM, Wood LM, Liu LF (2006) A protease pathway for the repair of topoisomerase II-DNA covalent complexes. J Biol Chem 281:35997–36003. doi:10.1074/jbc.M604149200

    Article  PubMed  CAS  Google Scholar 

  24. Capranico G, Kohn KW, Pommier Y (1990) Local sequence requirements for DNA cleavage by mammalian topoisomerase II in the presence of doxorubicin. Nucleic Acids Res 18:6611–6619

    Article  PubMed  CAS  Google Scholar 

  25. Pommier Y, Capranico G, Orr A, Kohn KW (1991) Local base sequence preferences for DNA cleavage by mammalian topoisomerase II in the presence of amsacrine or teniposide. Nucleic Acids Res 19:5973–5980

    Article  PubMed  CAS  Google Scholar 

  26. Morin PJ, Vogelstein B, Kinzler KW (1996) Apoptosis and APC in colorectal tumorigenesis. Proc Natl Acad Sci USA 93:7950–7954

    Article  PubMed  CAS  Google Scholar 

  27. Blandino G, Levine AJ, Oren M (1999) Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultured cells to chemotherapy. Oncogene 18:477–485

    Article  PubMed  CAS  Google Scholar 

  28. Chang FL, Lai MD (2001) Various forms of mutant p53 confer sensitivity to cisplatin and doxorubicin in bladder cancer cells. J Urol 166:304–310

    Article  PubMed  CAS  Google Scholar 

  29. Eksborg S, Strandler H-S, Edsmyr F, Näslund I, Tahvanainen P (1985) Pharmacokinetic study of IV infusions of adriamycin. Eur J Clin Pharmacol 28:205–212

    Article  PubMed  CAS  Google Scholar 

  30. Giaccone G, Linn S, Welink J, Catimel G, Stieltjes H, Van der Vijgh W, Eeltink C, Vermorken J, Pinedo H (1997) A dose-finding and pharmacokinetic study of reversal of multidrug resistance with SDZ PSC 833 in combination with doxorubicin in patients with solid tumors. Clin Cancer Res 3:2005–2015

    PubMed  CAS  Google Scholar 

  31. Greene R, Collins J, Jenkins J, Speyer J, Myers C (1983) Plasma pharmacokinetics of adriamycin and adriamycinol: implications for the design of in vitro experiments and treatment protocols. Cancer Res 43:3417–3421

    PubMed  CAS  Google Scholar 

  32. Mross K, Mayer U, Hamm K, Burk K, Hossfeld D (1990) Pharmacokinetics and metabolism of iodo-doxorubicin and doxorubicin in humans. Eur J Clin Pharmacol 39:507–513

    Article  PubMed  CAS  Google Scholar 

  33. Speth P, Linssen P, Termond E, Boezeman J, Wessels H, Haanen C (1989) In vivo and in vitro pharmacokinetic differences between four structurally closely related anthracyclines in hematopoetic cell subtypes in humans. Drug Metab Dispos 17:98–105

    PubMed  CAS  Google Scholar 

  34. Zhu G, Gilchrist R, Borley N, Chng H, Morgan M, Marshall J, Camplejohn R, Muir G, Hart I (2004) Reduction of TSG101 protein has a negative impact on tumor cell growth. Int J Cancer 109:541–547. doi:10.1002/ijc.20014

    Article  PubMed  CAS  Google Scholar 

  35. Dartsch D, Schaefer A, Boldt S, Kolch W, Marquardt H (2002) Comparison of anthracycline-induced death of human leukemia cells: programmed cell death versus necrosis. Apoptosis 7:537–548. doi:10.1023/A:1020647211557

    Article  PubMed  CAS  Google Scholar 

  36. Collins AR, Oscoz AA, Brunborg G, Gaivao I, Giovannelli L, Kruszewski M, Smith CC, Stetina R (2008) The comet assay: topical issues. Mutagenesis 23:143–151. doi:10.1093/mutage/gem051

    Article  PubMed  CAS  Google Scholar 

  37. Olive PL, Banath JP (2006) The comet assay: a method to measure DNA damage in individual cells. Nat Protoc 1:23–29. doi:10.1038/nprot.2006.5

    Article  PubMed  CAS  Google Scholar 

  38. Bar-On O, Shapira M, Hershko DD (2007) Differential effects of doxorubicin treatment on cell cycle arrest and Skp2 expression in breast cancer cells. Anticancer Drugs 18:1113–1121

    Article  PubMed  CAS  Google Scholar 

  39. Lee SM, Youn B, Kim CS, Kim CS, Kang C, Kim J (2005) Gamma-irradiation and doxorubicin treatment of normal human cells cause cell cycle arrest via different pathways. Mol Cells 20:331–338

    PubMed  CAS  Google Scholar 

  40. Robles SJ, Buehler PW, Negrusz A, Adami GR (1999) Permanent cell cycle arrest in asynchronously proliferating normal human fibroblasts treated with doxorubicin or etoposide but not camptothecin. Biochem Pharmacol 58:675–685

    Article  PubMed  CAS  Google Scholar 

  41. Venkatakrishnan CD, Dunsmore K, Wong H, Roy S, Sen CK, Wani A, Zweier JL, Ilangovan G (2008) HSP27 regulates p53 transcriptional activity in doxorubicin-treated fibroblasts and cardiac H9c2 cells: p21 upregulation and G2/M phase cell cycle arrest. Am J Physiol Heart Circ Physiol 294:H1736–H1744. doi:10.1152/ajpheart.91507.2007

    Article  PubMed  CAS  Google Scholar 

  42. Kim HS, Lee YS, Kim DK (2009) Doxorubicin exerts cytotoxic effects through cell cycle arrest and Fas-mediated cell death. Pharmacology 84:300–309. doi:10.1159/000245937

    Article  PubMed  CAS  Google Scholar 

  43. Malugin A, Kopeckova P, Kopecek J (2007) Liberation of doxorubicin from HPMA copolymer conjugate is essential for the induction of cell cycle arrest and nuclear fragmentation in ovarian carcinoma cells. J Control Release 124:6–10

    Article  PubMed  CAS  Google Scholar 

  44. Puri PL, Medaglia S, Cimino L, Maselli C, Germani A, De Marzio E, Levrero M, Balsano C (1997) Uncoupling of p21 induction and MyoD activation results in the failure of irreversible cell cycle arrest in doxorubicin-treated myocytes. J Cell Biochem 66:27–36

    Article  PubMed  CAS  Google Scholar 

  45. Banath JP, Klokov D, MacPhail SH, Banuelos CA, Olive PL (2010) Residual gammaH2AX foci as an indication of lethal DNA lesions. BMC Cancer 10:4. doi:10.1186/1471-2407-10-4

    Article  PubMed  Google Scholar 

  46. Speth PA, Raijmakers RA, Boezeman JB, Linssen PC, de Witte TJ, Wessels HM, Haanen C (1988) In vivo cellular adriamycin concentrations related to growth inhibition of normal and leukemic human bone marrow cells. Eur J Cancer Clin Oncol 24:667–674

    Article  PubMed  CAS  Google Scholar 

  47. Zhang XP, Liu F, Cheng Z, Wang W (2009) Cell fate decision mediated by p53 pulses. Proc Natl Acad Sci USA 106:12245–12250. doi:10.1073/pnas.0813088106

    Article  PubMed  CAS  Google Scholar 

  48. Binaschi M, Capranico G, De Isabella P, Mariani M, Supino R, Tinelli S, Zunino F (1990) Comparison of DNA cleavage induced by etoposide and doxorubicin in two human small-cell lung cancer lines with different sensitivities to topoisomerase II inhibitors. Int J Cancer 45:347–352

    Article  PubMed  CAS  Google Scholar 

  49. Martensson S, Nygren J, Osheroff N, Hammarsten O (2003) Activation of the DNA-dependent protein kinase by drug-induced and radiation-induced DNA strand breaks. Radiat Res 160:291–301

    Article  PubMed  CAS  Google Scholar 

  50. Muslimovic A, Nystrom S, Gao Y, Hammarsten O (2009) Numerical analysis of etoposide induced DNA breaks. PLoS One 4:e5859. doi:10.1371/journal.pone.0005859

    Article  PubMed  Google Scholar 

  51. Pohl TJ, Nickoloff JA (2008) Rad51-independent interchromosomal double-strand break repair by gene conversion requires Rad52 but not Rad55, Rad57, or Dmc1. Mol Cell Biol 28:897–906. doi:10.1128/MCB.00524-07

    Article  PubMed  CAS  Google Scholar 

  52. Bahmed K, Nitiss KC, Nitiss JL (2010) UnTTrapping the ends: a new player in overcoming protein linked DNA damage. Cell Res 20:122–123. doi:10.1038/cr.2010.17

    Article  PubMed  Google Scholar 

  53. Kurz EU, Leader KB, Kroll DJ, Clark M, Gieseler F (2000) Modulation of human DNA topoisomerase IIalpha function by interaction with 14-3-3epsilon. J Biol Chem 275:13948–13954. doi:10.1074/jbc.275.18.13948

    Article  PubMed  CAS  Google Scholar 

  54. Mao Y, Desai SD, Ting CY, Hwang J, Liu LF (2001) 26 S proteasome-mediated degradation of topoisomerase II cleavable complexes. J Biol Chem 276:40652–40658. doi:10.1074/jbc.M104009200

    Article  PubMed  CAS  Google Scholar 

  55. Salmena L, Lam V, McPherson J, Goldenberg G (2001) Role of proteasomal degradation in the cell cycle-dependent regulation of DNA topoisomerase IIalpha expression. Biochem Pharmacol 61:795–802

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. Dr. Frank Gieseler from the University Hospital Luebeck for many helpful discussions. Our work was supported by the Ernst und Elfriede Griebel’s Foerderungs- und Unterstuetzungsstiftung, Hamburg.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothee C. Dartsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schonn, I., Hennesen, J. & Dartsch, D.C. Ku70 and Rad51 vary in their importance for the repair of doxorubicin- versus etoposide-induced DNA damage. Apoptosis 16, 359–369 (2011). https://doi.org/10.1007/s10495-010-0564-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-010-0564-y

Keywords

Navigation