Skip to main content
Log in

In vivo imaging of early stage apoptosis by measuring real-time caspase-3/7 activation

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

In vivo imaging of apoptosis in a preclinical setting in anticancer drug development could provide remarkable advantages in terms of translational medicine. So far, several imaging technologies with different probes have been used to achieve this goal. Here we describe a bioluminescence imaging approach that uses a new formulation of Z-DEVD-aminoluciferin, a caspase 3/7 substrate, to monitor in vivo apoptosis in tumor cells engineered to express luciferase. Upon apoptosis induction, Z-DEVD-aminoluciferin is cleaved by caspase 3/7 releasing aminoluciferin that is now free to react with luciferase generating measurable light. Thus, the activation of caspase 3/7 can be measured by quantifying the bioluminescent signal. Using this approach, we have been able to monitor caspase-3 activation and subsequent apoptosis induction after camptothecin and temozolomide treatment on xenograft mouse models of colon cancer and glioblastoma, respectively. Treated mice showed more than 2-fold induction of Z-DEVD-aminoluciferin luminescent signal when compared to the untreated group. Combining D-luciferin that measures the total tumor burden, with Z-DEVD-aminoluciferin that assesses apoptosis induction via caspase activation, we confirmed that it is possible to follow non-invasively tumor growth inhibition and induction of apoptosis after treatment in the same animal over time. Moreover, here we have proved that following early apoptosis induction by caspase 3 activation is a good biomarker that accurately predicts tumor growth inhibition by anti-cancer drugs in engineered colon cancer and glioblastoma cell lines and in their respective mouse xenograft models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    Article  CAS  PubMed  Google Scholar 

  2. Fulda S (2003) Tumor resistance to apoptosis. Int J Cancer 124:511–515

    Article  Google Scholar 

  3. Roos WP, Batista LFZ, Naumann SC et al (2007) Apoptosis in malignant glioma cells triggered by the temozolomide-induced DNA lesion O6-methylguanine. Oncogene 26:186–197

    Article  CAS  PubMed  Google Scholar 

  4. Xu Y, Villalona-Calero MA (2002) Irinotecan: mechanisms of tumor resistance and novel strategies for modulating its activity. Ann Oncol 13:1841–1851

    Article  CAS  PubMed  Google Scholar 

  5. Jin Z, El Deiry WS (2005) Overview of cell death signaling pathway. Cancer Biol Ther 4:139–163

    Article  CAS  PubMed  Google Scholar 

  6. Kiechle FL, Zhang X (2002) Apoptosis: biochemical aspects and clinical implications. Clin Chim Acta 326:27–45

    Article  CAS  PubMed  Google Scholar 

  7. Rotonda J, Nicholson DW, Fazil KM et al (1996) The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis. Nat Struct Biol 3:619–625

    Article  CAS  PubMed  Google Scholar 

  8. Grutter MG (2000) Caspases: key players in programmed cell death. Curr Opin Struct Biol 10:649–655

    Article  CAS  PubMed  Google Scholar 

  9. Lee BW, Olin MR, Johnson GL, Griffin RJ (2008) In vitro and in vivo apoptosis detection using membrane permeant fluorescent-labeled inhibitors of caspases. Methods Mol Biol 414:109–135

    Article  CAS  PubMed  Google Scholar 

  10. Kuzelová K, Grebenová D, Hrkal Z (2007) Labeling of apoptotic JURL-MK1 cells by fluorescent caspase-3 inhibitor FAM-DEVD-fmk occurs mainly at site(s) different from caspase-3 active site. Cytometry A 71:605–611

    PubMed  Google Scholar 

  11. Barnett EM, Zhang X, Maxwell D et al (2009) Single-cell imaging of retinal ganglion cell apoptosis with a cell-penetrating, activatable peptide probe in an in vivo glaucoma model. PNAS 106:9391–9396

    Article  CAS  PubMed  Google Scholar 

  12. Ray P, De A, Patel M, Gambhir SS (2008) Monitoring caspase-3 activation with a multimodality imaging sensor in living subjects. Clin Cancer Res 14:5801–5809

    Article  CAS  PubMed  Google Scholar 

  13. Troy T, Jekic-McMullen D et al (2004) Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models. Mol Imaging 3:9–29

    Article  CAS  PubMed  Google Scholar 

  14. Tuchin VV, Wang RK, Yeh AT (2008) Optical clearing of tissues and cells. J Biomed Opt 13:021101

    Article  PubMed  Google Scholar 

  15. Yang Y, Hong H, Zhang Y, Cai W (2009) Molecular imaging of proteases in cancer. Pubmed Central. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2838618/. Accessed in PMC 2010 March 15

  16. Laxman B, Hall DE, Bhojani MS et al (2002) Noninvasive real-time imaging of apoptosis. PNAS 99:16551–16555

    Article  CAS  PubMed  Google Scholar 

  17. Liu JJ, Wang W, Dicker DT et al (2005) Bioluminescent imaging of TRAIL-induced apoptosis through detection of caspase activation following cleavage of Z-DEVD-aminoluciferin. Cancer Biol Ther 4:885–892

    CAS  PubMed  Google Scholar 

  18. Kizaka-Kondoh S, Itasaka S et al (2009) Selective killing of hypoxia-inducible factor-1-active cells improves survival in a mouse model of invasive and metastatic pancreatic cancer. Clin Cancer Res 15:3433–3441

    Article  CAS  PubMed  Google Scholar 

  19. Hickson J, Ackler S, Klaubert D et al (2010) Noninvasive molecular imaging of apoptosis in vivo using a modified firefly luciferase substrate, Z-DEVD-aminoluciferin. Cell Death Differ 17:1003–1010

    Article  CAS  PubMed  Google Scholar 

  20. Zeng L, Kizaka-Kondoh S, Itasaka S et al (2007) Hypoxia inducible factor-1 influences sensitivity to paclitaxel of human lung cancer cell lines under normoxic conditions. Cancer Sci 98:1394–1401

    Article  CAS  PubMed  Google Scholar 

  21. Del Bene F, Germani M, De Nicolao G et al (2009) A model-based approach to the in vitro evaluation of anticancer activity. Cancer Chemother Pharmacol 63:827–836

    Article  CAS  PubMed  Google Scholar 

  22. Friedman HS, Kerby T, Calvert H (2000) Temozolomide and treatment of malignant glioma. Clin Cancer Res 6:2585–2597

    CAS  PubMed  Google Scholar 

  23. Nair JS, de Stanchina E, Schwartz GK (2009) The topoisomerase I poison CPT-11 enhances the effect of the Aurora B kinase inhibitor AZD1152 both in vitro and in vivo. Clin Cancer Res 15:2022–2030

    Article  CAS  PubMed  Google Scholar 

  24. Shah K, Tung CH, Breakefield XO et al (2005) In vivo imaging of S-TRAIL-mediated tumor regression and apoptosis. Mol Ther 11:926–931

    Article  CAS  PubMed  Google Scholar 

  25. Lindner D, Raghavan D (2009) Intra-tumoural extra-cellular pH: a useful parameter of response to chemotherapy in syngeneic tumour. lines Br J Cancer 100:1287–1291

    Article  CAS  Google Scholar 

  26. Tiefenthaler M, Amberger A, Bacher N et al (2001) Increased lactate production follows loss of mitochondrial membrane potential during apoptosis of human leukaemia cells. Br J Haematol 114:574–580

    Article  CAS  PubMed  Google Scholar 

  27. Tisi L et al. (2010). PH tolerant luciferase. US Patent 68,739. Washington, DC. US Patent and Trademark Office http://ip.com/patapp/US20100068739. 18 May 2010

  28. Ekert PG, Silke J, Vaux DL (1999) Caspase inhibitors. Cell Death Differ 6:1081–1086

    Article  CAS  PubMed  Google Scholar 

  29. Darzynkiewicz Z, Bedner E, Smolewski P et al (2002) Detection of caspases activation in situ by fluorochrome-labeled inhibitors of caspases (FLICA). Meth Molec Biol 203:289–299

    CAS  Google Scholar 

  30. Tan DS, Thomas GV, Garrett MD et al (2009) Biomarker-driven early clinical trials in oncology: a paradigm shift in drug development. Cancer J 15:406–420

    Article  CAS  PubMed  Google Scholar 

  31. Hurko O (2009) The uses of biomarkers in drug development. Ann N Y Acad Sci 1180:1–10

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Cappella.

Additional information

Matteo Scabini and Fabio Stellari equally contributed to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scabini, M., Stellari, F., Cappella, P. et al. In vivo imaging of early stage apoptosis by measuring real-time caspase-3/7 activation. Apoptosis 16, 198–207 (2011). https://doi.org/10.1007/s10495-010-0553-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-010-0553-1

Keywords

Navigation