Skip to main content

Advertisement

Log in

Clearance of dying cells and systemic lupus erythematosus: the role of C1q and the complement system

  • Clearance of dead cells: mechanisms, immune responses and implication in the development of diseases
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease of unknown etiology characterized by the presence of pathogenic high-titer autoantibodies to a diverse group of autoantigens. In 88% of patients, autoantibodies are present an average of 3.3 years before diagnosis. Antinuclear, anti-Ro, anti-La, and anti-phospholipid antibodies appear first, followed by anti-DNA, anti-Smith and anti-ribonucleoprotein. These autoantibodies have features of an antigen-driven, T-cell-dependent immune response. Once present, the course of SLE is characterized by disease flares and autoimmune dysregulation. Programmed cell death (PCD), an essential developmental and homeostatic mechanism, is the preferred physiological death processes for cells as well as an important immune response regulator. Appropriate clearance of apoptotic material completes the PCD process, and is essential for regulating of inflammation and maintaining self-tolerance. Early complement proteins are important in protecting humans against the development of SLE and the protective role of C1q and complement in SLE is mainly related to their role in clearance of dying cells. However, the complement system is also an important ingredient in inflammation, which mediates SLE pathogenesis. Thus, the question remains whether complement factors have either a protective or a destructive role, or a combination of both.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References:

  1. Arbuckle MR, McClain MT, Rubertone MV et al (2003) Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N Engl J Med 349:1526–1533

    Article  CAS  PubMed  Google Scholar 

  2. Diamond B, Katz JB, Paul E, Aranow C, Lustgarten D, Scharff MD (1992) The role of somatic mutation in the pathogenic anti-DNA response. Annu Rev Immunol 10:731–757

    Article  CAS  PubMed  Google Scholar 

  3. Radic MZ, Weigert M (1994) Genetic and structural evidence for antigen selection of anti-DNA antibodies. Annu Rev Immunol 12:487–520

    Article  CAS  PubMed  Google Scholar 

  4. Dancey JT, Deubelbeiss KA, Harker LA, Finch CA (1976) Neutrophil kinetics in man. J Clin Invest 58:705–715

    Article  CAS  PubMed  Google Scholar 

  5. Wyllie AH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284:555–556

    Article  CAS  PubMed  Google Scholar 

  6. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391:43–50

    Article  CAS  PubMed  Google Scholar 

  7. Sakahira H, Enari M, Nagata S (1998) Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391:96–99

    Article  CAS  PubMed  Google Scholar 

  8. Kawane K, Fukuyama H, Yoshida H et al (2003) Impaired thymic development in mouse embryos deficient in apoptotic DNA degradation. Nat Immunol 4:138–144

    Article  CAS  PubMed  Google Scholar 

  9. Chiarugi A (2005) ‘Simple but not simpler’: toward a unified picture of energy requirements in cell death. Faseb J 19:1783–1788

    Article  CAS  PubMed  Google Scholar 

  10. Kroemer G, Martin SJ (2005) Caspase-independent cell death. Nat Med 11:725–730

    Article  PubMed  CAS  Google Scholar 

  11. Zong WX, Thompson CB (2006) Necrotic death as a cell fate. Genes Dev 20:1–15

    Article  CAS  PubMed  Google Scholar 

  12. Levine B, Deretic V (2007) Unveiling the roles of autophagy in innate and adaptive immunity. Nat Rev Immunol 7:767–777

    Article  CAS  PubMed  Google Scholar 

  13. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8:741–752

    Article  CAS  PubMed  Google Scholar 

  14. Darzynkiewicz Z, Juan G, Li X, Gorczyca W, Murakami T, Traganos F (1997) Cytometry in cell necrobiology: analysis of apoptosis and accidental cell death (necrosis). Cytometry 27:1–20

    Article  CAS  PubMed  Google Scholar 

  15. Henriquez M, Armisen R, Stutzin A, Quest AF (2008) Cell death by necrosis, a regulated way to go. Curr Mol Med 8:187–206

    Article  CAS  PubMed  Google Scholar 

  16. Vanlangenakker N, Vanden Berghe T, Krysko DV, Festjens N, Vandenabeele P (2008) Molecular mechanisms and pathophysiology of necrotic cell death. Curr Mol Med 8:207–220

    Article  CAS  PubMed  Google Scholar 

  17. Mohan C, Adams S, Stanik V, Datta SK (1993) Nucleosome: a major immunogen for pathogenic autoantibody-inducing T cells of lupus. J Exp Med 177:1367–1381

    Article  CAS  PubMed  Google Scholar 

  18. Casciola-Rosen LA, Anhalt G, Rosen A (1994) Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J Exp Med 179:1317–1330

    Article  CAS  PubMed  Google Scholar 

  19. Verhoven B, Schlegel RA, Williamson P (1995) Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes. J Exp Med 182:1597–1601

    Article  CAS  PubMed  Google Scholar 

  20. Price BE, Rauch J, Shia MA et al (1996) Anti-phospholipid autoantibodies bind to apoptotic, but not viable, thymocytes in a beta 2-glycoprotein I-dependent manner. J Immunol 157:2201–2208

    CAS  PubMed  Google Scholar 

  21. Mevorach D, Zhou JL, Song X, Elkon KB (1998) Systemic exposure to irradiated apoptotic cells induces autoantibody production. J Exp Med 188:387–392

    Article  CAS  PubMed  Google Scholar 

  22. Rumore PM, Steinman CR (1990) Endogenous circulating DNA in systemic lupus erythematosus.Occurrence as multimeric complexes bound to histone. J Clin Invest 86:69–74

    Article  CAS  PubMed  Google Scholar 

  23. Herrmann M, Voll RE, Zoller OM, Hagenhofer M, Ponner BB, Kalden JR (1998) Impaired phagocytosis of apoptotic cell material by monocyte-derived macrophages from patients with systemic lupus erythematosus. Arthritis Rheum 41:1241–1250

    Article  CAS  PubMed  Google Scholar 

  24. Shoshan Y, Shapira I, Toubi E, Frolkis I, Yaron M, Mevorach D (2001) Accelerated Fas-mediated apoptosis of monocytes and maturing macrophages from patients with systemic lupus erythematosus: relevance to in vitro impairment of interaction with iC3b-opsonized apoptotic cells. J Immunol 167:5963–5969

    CAS  PubMed  Google Scholar 

  25. Napirei M, Karsunky H, Zevnik B, Stephan H, Mannherz HG, Moroy T (2000) Features of systemic lupus erythematosus in Dnase1-deficient mice. Nat Genet 25:177–181

    Article  CAS  PubMed  Google Scholar 

  26. Emlen W, Niebur J, Kadera R (1994) Accelerated in vitro apoptosis of lymphocytes from patients with systemic lupus erythematosus. J Immunol 152:3685–3692

    CAS  PubMed  Google Scholar 

  27. Perniok A, Wedekind F, Herrmann M, Specker C, Schneider M (1998) High levels of circulating early apoptic peripheral blood mononuclear cells in systemic lupus erythematosus. Lupus 7:113–118

    Article  CAS  PubMed  Google Scholar 

  28. Jaworowski A, Crowe SM (1999) Does HIV cause depletion of CD4+ T cells in vivo by the induction of apoptosis? Immunol Cell Biol 77:90–98

    Article  CAS  PubMed  Google Scholar 

  29. Ren Y, Tang J, Mok MY, Chan AW, Wu A, Lau CS (2003) Increased apoptotic neutrophils and macrophages and impaired macrophage phagocytic clearance of apoptotic neutrophils in systemic lupus erythematosus. Arthritis Rheum 48:2888–2897

    Article  PubMed  Google Scholar 

  30. Mevorach D (2004) The role of death-associated molecular patterns in the pathogenesis of systemic lupus erythematosus. Rheum Dis Clin North Am 30:487–504

    Article  PubMed  Google Scholar 

  31. Baumann I, Kolowos W, Voll RE et al (2002) Impaired uptake of apoptotic cells into tingible body macrophages in germinal centers of patients with systemic lupus erythematosus. Arthritis Rheum 46:191–201

    Article  PubMed  Google Scholar 

  32. Hargraves MM, Richmond H, Morton R (1948) Presentation of two bone marrow elements; the ‘tart’ cell and ‘LE’ cell. Proc Staff Meet Mayo Clin 23:25–28

    CAS  Google Scholar 

  33. Hargraves MM (1949) Production in vitro of the LE cell phenomenon: use of normal bone marrow elements and blood plasma from patients with acute disseminated lupus erythematosus. Proc Staff Meet Mayo Clin 24:234–237

    CAS  Google Scholar 

  34. Haserick JR, Bortz DW (1949) Normal bone marrow inclusion phenomena induced by lupus erythematosus plasma. J Invest Dermatol 13:47–49

    Article  CAS  PubMed  Google Scholar 

  35. Russell AI, Cunninghame Graham DS, Shepherd C et al (2004) Polymorphism at the C-reactive protein locus influences gene expression and predisposes to systemic lupus erythematosus. Hum Mol Genet 13:137–147

    Article  CAS  PubMed  Google Scholar 

  36. Rovere P, Sabbadini MG, Vallinoto C et al (1999) Dendritic cell presentation of antigens from apoptotic cells in a proinflammatory context: role of opsonizing anti-beta2-glycoprotein I antibodies. Arthritis Rheum 42:1412–1420

    Article  CAS  PubMed  Google Scholar 

  37. Reefman E, Horst G, Nijk MT, Limburg PC, Kallenberg CG, Bijl M (2007) Opsonization of late apoptotic cells by systemic lupus erythematosus autoantibodies inhibits their uptake via an Fcgamma receptor-dependent mechanism. Arthritis Rheum 56:3399–3411

    Article  CAS  PubMed  Google Scholar 

  38. Verbovetski I, Weintraub M, Hochberg M, Enk CD, Mevorach D. In vivo clearance of apoptotic keratinocytes induces a distinct, tolerant milieu and migration of tolerizing Langerhans cells. In preparation

  39. Blanco P, Palucka AK, Gill M, Pascual V, Banchereau J (2001) Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus. Science 294:1540–1543

    Article  CAS  PubMed  Google Scholar 

  40. Verbovetski I, Bychkov H, Trahtemberg U et al (2002) Opsonization of apoptotic cells by autologous iC3b facilitates clearance by immature dendritic cells, down-regulates DR and CD86, and up-regulates CC chemokine receptor 7. J Exp Med 196:1553–1561

    Article  CAS  PubMed  Google Scholar 

  41. Berkun Y, Levartovsky D, Rubinow A et al (2004) Methotrexate related adverse effects in patients with rheumatoid arthritis are associated with the A1298C polymorphism of the MTHFR gene. Ann Rheum Dis 63:1227–1231

    Article  CAS  PubMed  Google Scholar 

  42. Ablin J, Verbovetski I, Trahtemberg U, Metzger S, Mevorach D (2005) Quinidine and procainamide inhibit murine macrophage uptake of apoptotic and necrotic cells: a novel contributing mechanism of drug-induced-lupus. Apoptosis 10:1009–1018

    Article  CAS  PubMed  Google Scholar 

  43. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    Article  CAS  PubMed  Google Scholar 

  44. Reis e Sousa C (2001) Dendritic cells as sensors of infection. Immunity 14:495–498

    Article  CAS  PubMed  Google Scholar 

  45. Steinman RM, Hawiger D, Nussenzweig MC (2003) Tolerogenic dendritic cells. Annu Rev Immunol 21:685–711

    Article  CAS  PubMed  Google Scholar 

  46. Albert ML, Pearce SF, Francisco LM et al (1998) Immature dendritic cells phagocytose apoptotic cells via alphavbeta5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J Exp Med 188:1359–1368

    Article  CAS  PubMed  Google Scholar 

  47. Albert ML, Sauter B, Bhardwaj N (1998) Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392:86–89

    Article  CAS  PubMed  Google Scholar 

  48. Berard F, Blanco P, Davoust J et al (2000) Cross-priming of naive CD8 T cells against melanoma antigens using dendritic cells loaded with killed allogeneic melanoma cells. J Exp Med 192:1535–1544

    Article  CAS  PubMed  Google Scholar 

  49. Nouri-Shirazi M, Banchereau J, Fay J, Palucka K (2000) Dendritic cell based tumor vaccines. Immunol Lett 74:5–10

    Article  CAS  PubMed  Google Scholar 

  50. Yrlid U, Svensson M, Johansson C, Wick MJ (2000) Salmonella infection of bone marrow-derived macrophages and dendritic cells: influence on antigen presentation and initiating an immune response. FEMS Immunol Med Microbiol 27:313–320

    Article  CAS  PubMed  Google Scholar 

  51. Yrlid U, Wick MJ (2000) Salmonella-induced apoptosis of infected macrophages results in presentation of a bacteria-encoded antigen after uptake by bystander dendritic cells. J Exp Med 191:613–624

    Article  CAS  PubMed  Google Scholar 

  52. Rubartelli A, Poggi A, Zocchi MR (1997) The selective engulfment of apoptotic bodies by dendritic cells is mediated by the alpha(v)beta3 integrin and requires intracellular and extracellular calcium. Eur J Immunol 27:1893–1900

    Article  CAS  PubMed  Google Scholar 

  53. Amarilyo G, Verbovetski I, Atallah M et al (2010) iC3b-opsonized apoptotic cells mediate a distinct anti-inflammatory response and transcriptional NF-kappaB-dependent blockade. Eur J Immunol 40:699–709

    Article  CAS  PubMed  Google Scholar 

  54. Marshak-Rothstein A (2006) Toll-like receptors in systemic autoimmune disease. Nat Rev Immunol 6:823–835

    Article  CAS  PubMed  Google Scholar 

  55. Botto M, Dell’Agnola C, Bygrave AE et al (1998) Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat Genet 19:56–59

    Article  CAS  PubMed  Google Scholar 

  56. Mevorach D, Mascarenhas JO, Gershov D, Elkon KB (1998) Complement-dependent clearance of apoptotic cells by human macrophages. J Exp Med 188:2313–2320

    Article  CAS  PubMed  Google Scholar 

  57. Banchereau J, Pulendran B, Steinman R, Palucka K (2000) Will the making of plasmacytoid dendritic cells in vitro help unravel their mysteries? J Exp Med 192:F39–F44

    Article  CAS  PubMed  Google Scholar 

  58. Koller M, Zwolfer B, Steiner G, Smolen JS, Scheinecker C (2004) Phenotypic and functional deficiencies of monocyte-derived dendritic cells in systemic lupus erythematosus (SLE) patients. Int Immunol 16:1595–1604

    Article  PubMed  CAS  Google Scholar 

  59. Scheinecker C, Zwolfer B, Koller M, Manner G, Smolen JS (2001) Alterations of dendritic cells in systemic lupus erythematosus: phenotypic and functional deficiencies. Arthritis Rheum 44:856–865

    Article  CAS  PubMed  Google Scholar 

  60. Decker P, Kotter I, Klein R, Berner B, Rammensee HG (2006) Monocyte-derived dendritic cells over-express CD86 in patients with systemic lupus erythematosus. Rheumatology (Oxford) 45:1087–1095

    Article  CAS  Google Scholar 

  61. Ding D, Mehta H, McCune WJ, Kaplan MJ (2006) Aberrant phenotype and function of myeloid dendritic cells in systemic lupus erythematosus. J Immunol 177:5878–5889

    CAS  PubMed  Google Scholar 

  62. Fadok VA, Warner ML, Bratton DL, Henson PM (1998) CD36 is required for phagocytosis of apoptotic cells by human macrophages that use either a phosphatidylserine receptor or the vitronectin receptor (alpha v beta 3). J Immunol 161:6250–6257

    CAS  PubMed  Google Scholar 

  63. Duperrier K, Eljaafari A, Dezutter-Dambuyant C et al (2000) Distinct subsets of dendritic cells resembling dermal DCs can be generated in vitro from monocytes, in the presence of different serum supplements. J Immunol Methods 238:119–131

    Article  CAS  PubMed  Google Scholar 

  64. Pisetsky DS (1992) Anti-DNA antibodies in systemic lupus erythematosus. Rheum Dis Clin North Am 18:437–454

    CAS  PubMed  Google Scholar 

  65. Li H, Jiang Y, Cao H, Radic M, Prak EL, Weigert M (2003) Regulation of anti-phosphatidylserine antibodies. Immunity 18:185–192

    Article  CAS  PubMed  Google Scholar 

  66. Leadbetter EA, Rifkin IR, Hohlbaum AM, Beaudette BC, Shlomchik MJ, Marshak-Rothstein A (2002) Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416:603–607

    Article  CAS  PubMed  Google Scholar 

  67. Viglianti GA, Lau CM, Hanley TM, Miko BA, Shlomchik MJ, Marshak-Rothstein A (2003) Activation of autoreactive B cells by CpG dsDNA. Immunity 19:837–847

    Article  CAS  PubMed  Google Scholar 

  68. Means TK, Latz E, Hayashi F, Murali MR, Golenbock DT, Luster AD (2005) Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J Clin Invest 115:407–417

    CAS  PubMed  Google Scholar 

  69. Barrat FJ, Meeker T, Gregorio J et al (2005) Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J Exp Med 202:1131–1139

    Article  CAS  PubMed  Google Scholar 

  70. Vollmer J, Tluk S, Schmitz C et al (2005) Immune stimulation mediated by autoantigen binding sites within small nuclear RNAs involves Toll-like receptors 7 and 8. J Exp Med 202:1575–1585

    Article  CAS  PubMed  Google Scholar 

  71. Gershov D, Kim S, Brot N, Elkon KB (2000) C-Reactive protein binds to apoptotic cells, protects the cells from assembly of the terminal complement components, and sustains an antiinflammatory innate immune response: implications for systemic autoimmunity. J Exp Med 192:1353–1364

    Article  CAS  PubMed  Google Scholar 

  72. Fishelson Z, Attali G, Mevorach D (2001) Complement and apoptosis. Mol Immunol 38:207–219

    Article  CAS  PubMed  Google Scholar 

  73. Bohlson SS, Fraser DA, Tenner AJ (2007) Complement proteins C1q and MBL are pattern recognition molecules that signal immediate and long-term protective immune functions. Mol Immunol 44:33–43

    Article  CAS  PubMed  Google Scholar 

  74. Zipfel PF, Skerka C (2009) Complement regulators and inhibitory proteins. Nat Rev Immunol 9:729–740

    CAS  PubMed  Google Scholar 

  75. Ehrlich P (1899) Zur Theorie der Lysin Wirkung. Berl Klin Wochenschr 1:6–9

    Google Scholar 

  76. Metschnikow II (1902) Immunität bei Infektionskrankheiten. Fischer, Frankfurt

    Google Scholar 

  77. Taylor PR, Carugati A, Fadok VA et al (2000) A hierarchical role for classical pathway complement proteins in the clearance of apoptotic cells in vivo. J Exp Med 192:359–366

    Article  CAS  PubMed  Google Scholar 

  78. Ogden CA, deCathelineau A, Hoffmann PR et al (2001) C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J Exp Med 194:781–795

    Article  CAS  PubMed  Google Scholar 

  79. Gaipl US, Kuenkele S, Voll RE et al (2001) Complement binding is an early feature of necrotic and a rather late event during apoptotic cell death. Cell Death Differ 8:327–334

    Article  CAS  PubMed  Google Scholar 

  80. Elward K, Griffiths M, Mizuno M et al (2005) CD46 plays a key role in tailoring innate immune recognition of apoptotic and necrotic cells. J Biol Chem 280:36342–36354

    Article  CAS  PubMed  Google Scholar 

  81. Godson C, Mitchell S, Harvey K, Petasis NA, Hogg N, Brady HR (2000) Cutting edge: lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages. J Immunol 164:1663–1667

    CAS  PubMed  Google Scholar 

  82. Mevorach D (2000) Opsonization of apoptotic cells. Implications for uptake and autoimmunity. Ann N Y Acad Sci 926:226–235

    Article  CAS  PubMed  Google Scholar 

  83. Bickerstaff MC, Botto M, Hutchinson WL et al (1999) Serum amyloid P component controls chromatin degradation and prevents antinuclear autoimmunity. Nat Med 5:694–697

    Article  CAS  PubMed  Google Scholar 

  84. Kim SJ, Gershov D, Ma X, Brot N, Elkon KB (2002) I-PLA(2) activation during apoptosis promotes the exposure of membrane lysophosphatidylcholine leading to binding by natural immunoglobulin M antibodies and complement activation. J Exp Med 196:655–665

    Article  CAS  PubMed  Google Scholar 

  85. Anderson HA, Maylock CA, Williams JA, Paweletz CP, Shu H, Shacter E (2003) Serum-derived protein S binds to phosphatidylserine and stimulates the phagocytosis of apoptotic cells. Nat Immunol 4:87–91

    Article  CAS  PubMed  Google Scholar 

  86. Krispin A, Bledi Y, Atallah M et al (2006) Apoptotic cell thrombospondin-1 and heparin-binding domain lead to dendritic-cell phagocytic and tolerizing states. Blood 108:3580–3589

    Article  CAS  PubMed  Google Scholar 

  87. Aderem AA, Wright SD, Silverstein SC, Cohn ZA (1985) Ligated complement receptors do not activate the arachidonic acid cascade in resident peritoneal macrophages. J Exp Med 161:617–622

    Article  CAS  PubMed  Google Scholar 

  88. Yamamoto K, Johnston RB Jr (1984) Dissociation of phagocytosis from stimulation of the oxidative metabolic burst in macrophages. J Exp Med 159:405–416

    Article  CAS  PubMed  Google Scholar 

  89. Sutterwala FS, Noel GJ, Clynes R, Mosser DM (1997) Selective suppression of interleukin-12 induction after macrophage receptor ligation. J Exp Med 185:1977–1985

    Article  CAS  PubMed  Google Scholar 

  90. Marth T, Kelsall BL (1997) Regulation of interleukin-12 by complement receptor 3 signaling. J Exp Med 185:1987–1995

    Article  CAS  PubMed  Google Scholar 

  91. Sohn JH, Bora PS, Suk HJ, Molina H, Kaplan HJ, Bora NS (2003) Tolerance is dependent on complement C3 fragment iC3b binding to antigen-presenting cells. Nat Med 9:206–212

    Article  CAS  PubMed  Google Scholar 

  92. Rabs U, Martin H, Hitschold T, Golan MD, Heinz HP, Loos M (1986) Isolation and characterization of macrophage-derived C1q and its similarities to serum C1q. Eur J Immunol 16:1183–1186

    Article  CAS  PubMed  Google Scholar 

  93. Mukundan L, Odegaard JI, Morel CR et al (2009) PPAR-delta senses and orchestrates clearance of apoptotic cells to promote tolerance. Nat Med 15:1266–1272

    Article  CAS  PubMed  Google Scholar 

  94. A-Gonzalez N, Bensinger SJ, Hong C et al (2009) Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity 31:245–258

    Article  CAS  PubMed  Google Scholar 

  95. Kishore U, Gaboriaud C, Waters P et al (2004) C1q and tumor necrosis factor superfamily: modularity and versatility. Trends Immunol 25:551–561

    Article  CAS  PubMed  Google Scholar 

  96. van de Wetering JK, van Golde LM, Batenburg JJ (2004) Collectins: players of the innate immune system. Eur J Biochem/FEBS 271:1229–1249

    Article  CAS  Google Scholar 

  97. Stuart GR, Lynch NJ, Day AJ, Schwaeble WJ, Sim RB (1997) The C1q and collectin binding site within C1q receptor (cell surface calreticulin). Immunopharmacology 38:73–80

    Article  CAS  PubMed  Google Scholar 

  98. Gardai SJ, McPhillips KA, Frasch SC et al (2005) Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123:321–334

    Article  CAS  PubMed  Google Scholar 

  99. Navratil JS, Watkins SC, Wisnieski JJ, Ahearn JM (2001) The globular heads of C1q specifically recognize surface blebs of apoptotic vascular endothelial cells. J Immunol 166:3231–3239

    CAS  PubMed  Google Scholar 

  100. Paidassi H, Tacnet-Delorme P, Garlatti V et al (2008) C1q binds phosphatidylserine and likely acts as a multiligand-bridging molecule in apoptotic cell recognition. J Immunol 180:2329–2338

    CAS  PubMed  Google Scholar 

  101. Obeid M, Tesniere A, Ghiringhelli F et al (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13:54–61

    Article  CAS  PubMed  Google Scholar 

  102. Kono DH, Theofilopoulos AN (2006) Genetics of SLE in mice. Springer Semin Immunopathol 28:83–96

    Article  PubMed  Google Scholar 

  103. Speirs C, Fielder AH, Chapel H, Davey NJ, Batchelor JR (1989) Complement system protein C4 and susceptibility to hydralazine-induced systemic lupus erythematosus. Lancet 1:922–924

    Article  CAS  PubMed  Google Scholar 

  104. Kristjansdottir H, Bjarnadottir K, Hjalmarsdottir IB, Grondal G, Arnason A, Steinsson K (2000) A study of C4AQ0 and MHC haplotypes in Icelandic multicase families with systemic lupus erythematosus. J Rheumatol 27:2590–2596

    CAS  PubMed  Google Scholar 

  105. Steinsson K, Jonsdottir S, Arason GJ et al (1998) A study of the association of HLA DR, DQ, and complement C4 alleles with systemic lupus erythematosus in Iceland. Ann Rheum Dis 57:503–505

    Article  CAS  PubMed  Google Scholar 

  106. Chen Z, Koralov SB, Kelsoe G (2000) Complement C4 inhibits systemic autoimmunity through a mechanism independent of complement receptors CR1 and CR2. J Exp Med 192:1339–1352

    Article  CAS  PubMed  Google Scholar 

  107. Paul E, Pozdnyakova OO, Mitchell E, Carroll MC (2002) Anti-DNA autoreactivity in C4-deficient mice. Eur J Immunol 32:2672–2679

    Article  CAS  PubMed  Google Scholar 

  108. Schaller M, Bigler C, Danner D, Ditzel HJ, Trendelenburg M (2009) Autoantibodies against C1q in systemic lupus erythematosus are antigen-driven. J Immunol 183:8225–8231

    Article  CAS  PubMed  Google Scholar 

  109. Makrides SC (1998) Therapeutic inhibition of the complement system. Pharmacol Rev 50:59–87

    CAS  PubMed  Google Scholar 

  110. Manzi S, Rairie JE, Carpenter AB et al (1996) Sensitivity and specificity of plasma and urine complement split products as indicators of lupus disease activity. Arthritis Rheum 39:1178–1188

    Article  CAS  PubMed  Google Scholar 

  111. Niculescu F, Rus H, van Biesen T, Shin ML (1997) Activation of Ras and mitogen-activated protein kinase pathway by terminal complement complexes is G protein dependent. J Immunol 158:4405–4412

    CAS  PubMed  Google Scholar 

  112. Paul L, Skanes VM, Mayden J, Levine RP (1988) C4-mediated inhibition of immune precipitation and differences in inhibitory action of genetic variants, C4A3 and C4B1. Complement 5:110–119

    CAS  PubMed  Google Scholar 

  113. Takahashi M, Tack BF, Nussenzweig V (1977) Requirements for the solubilization of immune aggregates by complement: assembly of a factor B-dependent C3-convertase on the immune complexes. J Exp Med 145:86–100

    Article  CAS  PubMed  Google Scholar 

  114. Lachmann PJ, Walport MJ (1987) Deficiency of the effector mechanisms of the immune response and autoimmunity. Ciba Found Symp 129:149–171

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dror Mevorach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mevorach, D. Clearance of dying cells and systemic lupus erythematosus: the role of C1q and the complement system. Apoptosis 15, 1114–1123 (2010). https://doi.org/10.1007/s10495-010-0530-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-010-0530-8

Keywords

Navigation