Skip to main content
Log in

Parallel activation of Ca2+-induced survival and death pathways in cardiomyocytes by sorbitol-induced hyperosmotic stress

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Hyperosmotic stress promotes rapid and pronounced apoptosis in cultured cardiomyocytes. Here, we investigated if Ca2+ signals contribute to this response. Exposure of cardiomyocytes to sorbitol [600 mosmol (kg water)−1] elicited large and oscillatory intracellular Ca2+ concentration increases. These Ca2+ signals were inhibited by nifedipine, Cd2+, U73122, xestospongin C and ryanodine, suggesting contributions from both Ca2+ influx through voltage dependent L-type Ca2+ channels plus Ca2+ release from intracellular stores mediated by IP3 receptors and ryanodine receptors. Hyperosmotic stress also increased mitochondrial Ca2+ levels, promoted mitochondrial depolarization, reduced intracellular ATP content, and activated the transcriptional factor cyclic AMP responsive element binding protein (CREB), determined by increased CREB phosphorylation and electrophoretic mobility shift assays. Incubation with 1 mM EGTA to decrease extracellular [Ca2+] prevented cardiomyocyte apoptosis induced by hyperosmotic stress, while overexpression of an adenoviral dominant negative form of CREB abolished the cardioprotection provided by 1 mM EGTA. These results suggest that hyperosmotic stress induced by sorbitol, by increasing Ca2+ influx and raising intracellular Ca2+ concentration, activates Ca2+ release from stores and causes cell death through mitochondrial function collapse. In addition, the present results suggest that the Ca2+ increase induced by hyperosmotic stress promotes cell survival by recruiting CREB-mediated signaling. Thus, the fate of cardiomyocytes under hyperosmotic stress will depend on the balance between Ca2+-induced survival and death pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AdLacZ:

Adenovirus β-galactosidase

Ad dnCREB:

Adenovirus dominant negative CREB

AIF:

Apoptosis inducing factor

[Ca2+]i:

Intracellular calcium concentration

CICR:

Ca2+-induced Ca2+ release

CaMK:

Calmodulin kinase

CREB:

Cyclic AMP responsive element binding protein

CsA:

Cyclosporin A

ERK:

Extracellular signal-regulated kinase

fluo3-AM:

Fluo3 acetoximethylester

IP3:

Inositol-1,4,5-trisphosphate

IP3R:

IP3 receptor

LY:

LY294002

MAPK:

Mitogen activated protein kinase

MOI:

Multiplicity of infection

p38:

p38-Mitogen activated protein kinase

PD:

PD98059

PLC:

Phospholipase C

RuRed:

Ruthenium red

SB:

SB203580

SERCA:

Sarco/endoplasmic reticulum Ca2+-ATPase

TMRM:

Tetramethylrhodamine methyl ester

References

  1. Davies MJ (2000) The cardiomyopathies: an overview. Heart 83:469–474

    Article  CAS  PubMed  Google Scholar 

  2. Bing OH (1994) Hypothesis: apoptosis may be a mechanism for the transition to heart failure with chronic pressure overload. J Mol Cell Cardiol 26:943–948

    Article  CAS  PubMed  Google Scholar 

  3. Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, Quaini E, Di Loreto C, Beltrami CA, Krajewski S, Reed JC, Anversa P (1997) Apoptosis in the failing human heart. N Engl J Med 336:1131–1141

    Article  CAS  PubMed  Google Scholar 

  4. Galvez A, Morales MP, Eltit JM, Ocaranza P, Carrasco L, Campos X, Sapag-Hagar M, Diaz-Araya G, Lavandero S (2001) A rapid and strong apoptotic process is triggered by hyperosmotic stress in cultured rat cardiac myocytes. Cell Tissue Res 304:279–285

    Article  CAS  PubMed  Google Scholar 

  5. Wright AR, Rees SA (1998) Cardiac cell volume: crystal clear or murky waters? A comparison with other cell types. Pharmacol Ther 80:89–121

    Article  CAS  PubMed  Google Scholar 

  6. Hoover HE, Thuerauf DJ, Martindale JJ, Glembotski CC (2000) Alpha B-crystallin gene induction and phosphorylation by MKK6-activated p38. A potential role for alpha B-crystallin as a target of the p38 branch of the cardiac stress response. J Biol Chem 275:23825–23833

    Article  CAS  PubMed  Google Scholar 

  7. Takatani T, Takahashi K, Uozumi Y, Shikata E, Yamamoto Y, Ito T, Matsuda T, Schaffer SW, Fujio Y, Azuma J (2004) Taurine inhibits apoptosis by preventing formation of the Apaf-1/caspase-9 apoptosome. Am J Physiol 287:C949–C953

    Article  CAS  Google Scholar 

  8. Takatani T, Takahashi K, Uozumi Y, Matsuda T, Ito T, Schaffer SW, Fujio Y, Azuma J (2004) Taurine prevents the ischemia-induced apoptosis in cultured neonatal rat cardiomyocytes through Akt/caspase-9 pathway. Biochem Biophys Res Commun 316:484–489

    Article  CAS  PubMed  Google Scholar 

  9. Burg MB, Kwon ED, Kultz D (1997) Regulation of gene expression by hypertonicity. Annu Rev Physiol 59:437–455

    Article  CAS  PubMed  Google Scholar 

  10. Galvez AS, Ulloa JA, Chiong M, Criollo A, Eisner V, Barros LF, Lavandero S (2003) Aldose reductase induced by hyperosmotic stress mediates cardiomyocyte apoptosis—differential effects of sorbitol and mannitol. J Biol Chem 278:38484–38494

    Article  CAS  PubMed  Google Scholar 

  11. Distelhorst CW, Shore GC (2004) Bcl-2 and calcium: controversy beneath the surface. Oncogene 23:2875–2880

    Article  CAS  PubMed  Google Scholar 

  12. Hanson CJ, Bootman MD, Roderick HL (2004) Cell signalling: IP3 receptors channel calcium into cell death. Curr Biol 14:R933–R935

    Article  CAS  PubMed  Google Scholar 

  13. Kruman I, Guo Q, Mattson MP (1998) Calcium and reactive oxygen species mediate staurosporine-induced mitochondrial dysfunction and apoptosis in PC12 cells. J Neurosci Res 51:293–308

    Article  CAS  PubMed  Google Scholar 

  14. Lynch K, Fernandez G, Pappalardo A, Peluso JJ (2000) Basic fibroblast growth factor inhibits apoptosis of spontaneously immortalized granulosa cells by regulating intracellular free calcium levels through a protein kinase Cdelta-dependent pathway. Endocrinology 141:4209–4217

    Article  CAS  PubMed  Google Scholar 

  15. Martikainen P, Kyprianou N, Tucker RW, Isaacs JT (1991) Programmed death of nonproliferating androgen-independent prostatic cancer cells. Cancer Res 51:4693–4700

    CAS  PubMed  Google Scholar 

  16. Tombal B, Denmeade SR, Isaacs JT (1999) Assessment and validation of a microinjection method for kinetic analysis of [Ca2+]i in individual cells undergoing apoptosis. Cell Calcium 25:19–28

    Article  CAS  PubMed  Google Scholar 

  17. Zirpel L, Lippe WR, Rubel EW (1998) Activity-dependent regulation of [Ca2+]i in avian cochlear nucleus neurons: roles of protein kinases A and C and relation to cell death. J Neurophysiol 79:2288–2302

    CAS  PubMed  Google Scholar 

  18. Jiang S, Chow SC, Nicotera P, Orrenius S (1994) Intracellular Ca2+ signals activate apoptosis in thymocytes: studies using the Ca2+-ATPase inhibitor thapsigargin. Exp Cell Res 212:84–92

    Article  CAS  PubMed  Google Scholar 

  19. Pinton P, Ferrari D, Magalhaes P, Schulze-Osthoff K, Di Virgilio F, Pozzan T, Rizzuto R (2000) Reduced loading of intracellular Ca2+ stores and downregulation of capacitative Ca2+ influx in Bcl-2-overexpressing cells. J Cell Biol 148:857–862

    Article  CAS  PubMed  Google Scholar 

  20. Wertz IE, Dixit VM (2000) Characterization of calcium release-activated apoptosis of LNCaP prostate cancer cells. J Biol Chem 275:11470–11477

    Article  CAS  PubMed  Google Scholar 

  21. Bito H, Takemoto-Kimura S (2003) Ca(2+)/CREB/CBP-dependent gene regulation: a shared mechanism critical in long-term synaptic plasticity and neuronal survival. Cell Calcium 34:425–430

    Article  CAS  PubMed  Google Scholar 

  22. Persengiev SP, Green MR (2003) The role of ATF/CREB family members in cell growth, survival and apoptosis. Apoptosis 8:225–228

    Article  CAS  PubMed  Google Scholar 

  23. Brindle PK, Montminy MR (1992) The CREB family of transcription activators. Curr Opin Genet Dev 2:199–204

    Article  CAS  PubMed  Google Scholar 

  24. Deisseroth K, Mermelstein PG, Xia H, Tsien RW (2003) Signaling from synapse to nucleus: the logic behind the mechanisms. Curr Opin Neurobiol 13:354–365

    Article  CAS  PubMed  Google Scholar 

  25. Foncea R, Andersson M, Ketterman A, Blakesley V, Sapag-Hagar M, Sugden PH, LeRoith D, Lavandero S (1997) Insulin-like growth factor-I rapidly activates multiple signal transduction pathways in cultured rat cardiac myocytes. J Biol Chem 272:19115–19124

    Article  CAS  PubMed  Google Scholar 

  26. Ibarra C, Estrada M, Carrasco L, Chiong M, Liberona JL, Cardenas C, Diaz-Araya G, Jaimovich E, Lavandero S (2004) Insulin-like growth factor-1 induces an inositol 1,4,5-trisphosphate-dependent increase in nuclear and cytosolic calcium in cultured rat cardiac myocytes. J Biol Chem 279:7554–7565

    Article  CAS  PubMed  Google Scholar 

  27. Morales MP, Galvez A, Eltit JM, Ocaranza P, Diaz-Araya G, Lavandero S (2000) IGF-1 regulates apoptosis of cardiac myocyte induced by osmotic-stress. Biochem Biophys Res Commun 270:1029–1035

    Article  CAS  PubMed  Google Scholar 

  28. Hetz C, Bono MR, Barros LF, Lagos R (2002) Microcin E492, a channel-forming bacteriocin from Klebsiella pneumoniae, induces apoptosis in some human cell lines. Proc Natl Acad Sci USA 99:2696–2701

    Article  CAS  PubMed  Google Scholar 

  29. Villena J, Henriquez M, Torres V, Moraga F, Diaz-Elizondo J, Arredondo C, Chiong M, Olea-Azar C, Stutzin A, Lavandero S, Quest AF (2008) Ceramide-induced formation of ROS and ATP depletion trigger necrosis in lymphoid cells. Free Radic Biol Med 44:1146–1160

    Article  CAS  PubMed  Google Scholar 

  30. Klemm DJ, Watson PA, Frid MG, Dempsey EC, Schaack J, Colton LA, Nesterova A, Stenmark KR, Reusch JE (2001) cAMP response element-binding protein content is a molecular determinant of smooth muscle cell proliferation and migration. J Biol Chem 276:46132–46141

    Article  CAS  PubMed  Google Scholar 

  31. Duchen MR (1999) Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death. J Physiol 516:1–17

    Article  CAS  PubMed  Google Scholar 

  32. Benard G, Bellance N, James D, Parrone P, Fernandez H, Letellier T, Rossignol R (2007) Mitochondrial bioenergetics and structural network organization. J Cell Sci 120:838–848

    Article  CAS  PubMed  Google Scholar 

  33. Gunter TE, Buntinas L, Sparagna G, Eliseev R, Gunter K (2000) Mitochondrial calcium transport: mechanisms and functions. Cell Calcium 28:285–296

    Article  CAS  PubMed  Google Scholar 

  34. Juretic N, Urzua U, Munroe DJ, Jaimovich E, Riveros N (2007) Differential gene expression in skeletal muscle cells after membrane depolarization. J Cell Physiol 210:819–830

    Article  CAS  PubMed  Google Scholar 

  35. Beekman RE, van Hardeveld C, Simonides WS (1988) Effect of thyroid state on cytosolic free calcium in resting and electrically stimulated cardiac myocytes. Biochim Biophys Acta 969:18–27

    Article  CAS  PubMed  Google Scholar 

  36. Hallaq H, Hasin Y, Fixler R, Eilam Y (1989) Effect of ouabain on the concentration of free cytosolic Ca2+ and on contractility in cultured rat cardiac myocytes. J Pharmacol Exp Ther 248:716–721

    CAS  PubMed  Google Scholar 

  37. Erickson GR, Alexopoulos LG, Guilak F (2001) Hyper-osmotic stress induces volume change and calcium transients in chondrocytes by transmembrane, phospholipid, and G-protein pathways. J Biomech 34:1527–1535

    Article  CAS  PubMed  Google Scholar 

  38. Fernandes J, Lorenzo IM, Andrade YN, Garcia-Elias A, Serra SA, Fernandez-Fernandez JM, Valverde MA (2008) IP3 sensitizes TRPV4 channel to the mechano- and osmotransducing messenger 5′-6′-epoxyeicosatrienoic acid. J Cell Biol 181:143–155

    Article  CAS  PubMed  Google Scholar 

  39. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  CAS  PubMed  Google Scholar 

  40. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    Article  CAS  PubMed  Google Scholar 

  41. Wang SQ, Song LS, Lakatta EG, Cheng H (2001) Ca2+ signalling between single L-type Ca2+ channels and ryanodine receptors in heart cells. Nature 410:592–596

    Article  CAS  PubMed  Google Scholar 

  42. Boitano S, Dirksen ER, Sanderson MJ (1992) Intercellular propagation of calcium waves mediated by inositol trisphosphate. Science 258:292–295

    Article  CAS  PubMed  Google Scholar 

  43. Rizzuto R, Pozzan T (2006) Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 86:369–408

    Article  CAS  PubMed  Google Scholar 

  44. Carafoli E (2002) Calcium signaling: a tale for all seasons. Proc Natl Acad Sci USA 99:1115–1122

    Article  CAS  PubMed  Google Scholar 

  45. Rizzuto R, Brini M, Murgia M, Pozzan T (1993) Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262:744–747

    Article  CAS  PubMed  Google Scholar 

  46. Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–565

    Article  CAS  PubMed  Google Scholar 

  47. Gustafsson AB, Gottlieb RA (2008) Heart mitochondria: gates of life and death. Cardiovasc Res 77:334–343

    Article  CAS  PubMed  Google Scholar 

  48. Javadov S, Karmazyn M (2007) Mitochondrial permeability transition pore opening as an endpoint to initiate cell death and as a putative target for cardioprotection. Cell Physiol Biochem 20:1–22

    Article  CAS  PubMed  Google Scholar 

  49. Criollo A, Galluzzi L, Chiara MM, Tasdemir E, Lavandero S, Kroemer G (2007) Mitochondrial control of cell death induced by hyperosmotic stress. Apoptosis 12:3–18

    Article  CAS  PubMed  Google Scholar 

  50. Colell A, Ricci JE, Tait S, Milasta S, Maurer U, Bouchier-Hayes L, Fitzgerald P, Guio-Carrion A, Waterhouse NJ, Li CW, Mari B, Barbry P, Newmeyer DD, Beere HM, Green DR (2007) GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell 129:983–997

    Article  CAS  PubMed  Google Scholar 

  51. Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, Bodmer JL, Schneider P, Seed B, Tschopp J (2000) Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1:489–495

    Article  CAS  PubMed  Google Scholar 

  52. Scheller C, Knoferle J, Ullrich A, Prottengeier J, Racek T, Sopper S, Jassoy C, Rethwilm A, Koutsilieri E (2006) Caspase inhibition in apoptotic T cells triggers necrotic cell death depending on the cell type and the proapoptotic stimulus. J Cell Biochem 97:1350–1361

    Article  CAS  PubMed  Google Scholar 

  53. Chen TY, Chi KH, Wang JS, Chien CL, Lin WW (2009) Reactive oxygen species are involved in FasL-induced caspase-independent cell death and inflammatory responses. Free Radic Biol Med 46:643–655

    Article  CAS  PubMed  Google Scholar 

  54. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629

    Article  CAS  PubMed  Google Scholar 

  55. Christensen MLM, Braunstein TH, Treiman M (2008) Fluorescence assay for mitochondrial permeability transition in cardiomyocytes cultured in a microtiter plate. Anal Biochem 378:25–31

    Article  CAS  PubMed  Google Scholar 

  56. Hwang YC, Kaneko M, Bakr S, Liao H, Lu Y, Lewis ER, Yan S, Ii S, Itakura M, Rui L, Skopicki H, Homma S, Schmidt AM, Oates PJ, Szabolcs M, Ramasamy R (2004) Central role for aldose reductase pathway in myocardial ischemic injury. FASEB J 18:1192–1199

    Article  CAS  PubMed  Google Scholar 

  57. Srivastava SK, Ramana KV, Bhatnagar A (2005) Role of aldose reductase and oxidative damage in diabetes and the consequent potential for therapeutic options. Endocr Rev 26:380–392

    Article  CAS  PubMed  Google Scholar 

  58. Dragunow M (2004) CREB and neurodegeneration. Front Biosci 9:100–103

    Article  CAS  PubMed  Google Scholar 

  59. Shankar DB, Cheng JC, Sakamoto KM (2005) Role of cyclic AMP response element binding protein in human leukemias. Cancer 104:1819–1824

    Article  CAS  PubMed  Google Scholar 

  60. Walton M, Woodgate AM, Muravlev A, Xu R, During MJ, Dragunow M (1999) CREB phosphorylation promotes nerve cell survival. J Neurochem 73:1836–1842

    CAS  PubMed  Google Scholar 

  61. Pugazhenthi S, Nesterova A, Sable C, Heidenreich KA, Boxer LM, Heasley LE, Reusch JE (2000) Akt/protein kinase B up-regulates Bcl-2 expression through cAMP-response element-binding protein. J Biol Chem 275:10761–10766

    Article  CAS  PubMed  Google Scholar 

  62. Wang JM, Chao JR, Chen W, Kuo ML, Yen JJ, Yang-Yen HF (1999) The antiapoptotic gene mcl-1 is up-regulated by the phosphatidylinositol 3-kinase/Akt signaling pathway through a transcription factor complex containing CREB. Mol Cell Biol 19:6195–6206

    CAS  PubMed  Google Scholar 

  63. Maldonado C, Cea P, Adasme T, Collao A, Diaz-Araya G, Chiong M, Lavandero S (2005) IGF-1 protects cardiac myocytes from hyperosmotic stress-induced apoptosis via CREB. Biochem Biophys Res Commun 336:1112–1118

    Article  CAS  PubMed  Google Scholar 

  64. Kornhauser JM, Cowan CW, Shaywitz AJ, Dolmetsch RE, Griffith EC, Hu LS, Haddad C, Xia Z, Greenberg ME (2002) CREB transcriptional activity in neurons is regulated by multiple, calcium-specific phosphorylation events. Neuron 34:221–233

    Article  CAS  PubMed  Google Scholar 

  65. Mayr B, Montminy M (2001) Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2:599–609

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Fidel Albornoz and Ruth Marquez for their technical assistance and Drs Paola Llanos and David Mears (Faculty of Medicine, Universidad de of Chile, Santiago, Chile) for their help with fura2-AM experiments. This work was supported by FONDAP (Fondo de Areas Prioritarias, Fondo Nacional de Desarrollo Cientifico y Tecnologico, CONICYT, Chile) grant 15010006 (to S. L., C. H., E. J.). We also thank the International Collaboration Program ECOS-CONICTY grants C04B03 and C08S01 (to G. K. and S. L.) and FONDECYT Postdoctoral Grant 3070043 (to V. E.). C. M., C. I., V. P., R. B., C. Q., A. C. and J. M. V. are recipients of Ph. D. fellowships from CONICYT, Chile. S. L. is in a sabbatical leave at The University of Texas Southwestern Medical Center, Dallas.

Conflicts of interest statement

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Lavandero.

Additional information

M. Chiong, V. Parra and V. Eisner contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Hyperosmotic stress increases intracellular Ca2+ concentration in cultured cardiomyocytes. Cells preloaded with or fura2-AM were perfused with Ca2+-containing (black circles) or Ca2+-free (white circles) Krebs buffer and at the time indicated with an arrow cells were supplemented with sorbitol (Sor) (600 mosmol (kg water)−1). Using an inverted microscope equipped with a Xenon lamp, fura2-AM preloaded cells were excited at 340 nm and 380 nm, and monitored at 510 nm. The corresponding 340/380 fluorescence ratios were calculated. In the inset a more detailed fura2 340/380 fluorescence ratio in the first 75 s is depicted (TIFF 555 kb)

Supplementary Fig. 2

Hyperosmotic stress induces strong depolarization of cultured cardiomyocytes. The effect of hyperosmotic solutions on the membrane potential of cardiomyocytes was evaluated with the voltage-sensitive dye bis-(1,3-dibutylbarbituric acid)pentamethine oxonol (DiBAC4(3)) (Molecular Probes), an anionic dye that enters depolarized cells and exhibits enhanced fluorescence and green spectral shifts, so that increased fluorescence reflects increased membrane depolarization. Cardiac myocytes were incubated in Krebs buffer (145 mM NaCl, 5 mM KCl, 1 mM MgCl2, 2.6 mM CaCl2, 5.6 mM glucose, 10 mM HEPES, pH 7.4) for 10 min at 37°C; DiBAC4(3) dissolved in 0.2% DMSO was added to a final concentration of 300 nM and cells were further incubated for 10 min at 37°C. Cells preloaded with DiBAC4(3) were excited at 488 nm and monitored at 510 nm; fluorescence images were collected every 5 s in a confocal laser scanning inverted microscope (Zeiss LSM510). At the time indicated with an arrow, cells were perfused with Ca2+-containing Krebs buffer supplemented with sorbitol (Sor, 600 mosmol (kg water)−1). As control, DiBAC4(3) preloaded cardiomyocytes were depolarized by perfusion with Krebs buffer containing 20 mM, 50 mM or 80 mM KCl. Images were analyzed with ImageJ software and relative fluorescence (ΔF/Fo) values were determined. Values are the average ± S. E. M. of 4 independent experiments (TIFF 492 kb)

Supplementary Fig. 3

Effect of the pan caspase inhibitor Z-VAD-fmk on caspase 3 induction triggered by hyperosmotic stress. Cultured cardiomyocytes were exposed to sorbitol (600 mosmol (kg water)−1) or sorbitol supplemented with the pan-caspase inhibitor Z-VAD-fmk (10 μM). At different times, total protein extracts were prepared. Pro-caspase and caspase 3 were detected by Western blot analysis. Gels are representative of 3 different experiments. Results are given as mean ± SEM for 3 independent experiments. * P < 0.05 vs respective control 0 h, # P <0.05 vs 2 h sorbitol (TIFF 871 kb)

Supplementary Fig. 4

Cyclosporin A does not protect cardiomyocytes from cell death induced by hyperosmotic stress. Cardiomyocytes were preincubated 30 min with 0.5 μM cyclosporin A (CsA) and were then stimulated with culture media supplemented with sorbitol (600 mosmol (kg water)−1) for 24 h. Panel A. Cell viability was determined by the trypan blue exclusion method. Results are given as mean ± S. E. M. of 6 independent experiments. * P <0.05 vs control. Panel B. DNA laddering analysis was performed in DNA extracted using the chloroform:phenol method, fractionated by electrophoresis in 2% agarose gels and visualized by ethidium bromide/UV. The standard corresponds to 100 bp DNA ladder. Results are given as mean ± S. E. M. of 3 independent experiments. * P < 0.05 vs control (TIFF 1163 kb)

Supplementary Fig. 5

Effect of the expression of a dominant negative CREB on cardiac myocyte viability. Panel A: Cultured cardiomyocytes were transduced with an adenovirus overexpressing dominant negative CREB (Ad dnCREB) at a different multiplicity of infection (MOI). A LacZ adenovirus (Ad LacZ) was used as control. Cells were transduced for 48 h in DME:199 (4:1) and cell viability was determined as indicated in Materials and methods. Panel B: Cultured cardiomyocytes were transduced for 48 h with Ad dnCREB or Ad LacZ at MOI = 300. Total protein extracts were obtained and CREB and β-actin protein levels were determined by Western blot analysis using anti CREB or anti β-actin polyclonal antibody, respectively. CREB/β-actin levels were 2.0 ± 0.3 and 1.0 ± 0.2 in cardiomyocytes transduced with Ad dnCREB or Ad LacZ, respectively (TIFF 1806 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiong, M., Parra, V., Eisner, V. et al. Parallel activation of Ca2+-induced survival and death pathways in cardiomyocytes by sorbitol-induced hyperosmotic stress. Apoptosis 15, 887–903 (2010). https://doi.org/10.1007/s10495-010-0505-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-010-0505-9

Keywords

Navigation