Skip to main content

Advertisement

Log in

The regulatory role of α-synuclein and parkin in neuronal cell apoptosis; possible implications for the pathogenesis of Parkinson’s disease

  • Apoptosis in the Aging Brain
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is the second most common progressive neurodegenerative disorder beyond Alzheimer’s disease, affecting approximately 1% of people over the age of 65. The major pathological hallmarks of PD are significant loss of nigrostriatal dopaminergic (DA) neurons and the presence of intraneuronal protein inclusions termed Lewy bodies. Sporadic cases represent more than 90% of total patients with PD, while there exist several inherited forms caused by mutations in single genes. Identification and characterization of these causative genes and their products can help us understand the molecular mechanisms of DA neuronal cell death and design new approaches to treat both the inherited and sporadic forms of PD. Based on the finding that a point mutation in the gene encoding α-synuclein (αSyn) protein causes a rare familial form of PD, PARK1, it is now confirmed that αSyn is a major component of Lewy bodies in patients with sporadic PD. Abnormal accumulation of αSyn protein is considered a neurotoxic event in the development of PD. PARK4, another dominantly inherited form of familial PD, is caused by duplication or triplication of the αSyn gene locus. This genetic mutation results in the production of large amounts of wild-type αSyn protein, supporting the αSyn-induced neurodegeneration hypothesis. On the other hand, the recessively inherited early-onset Parkinsonism is caused in about half of the cases with loss-of-function mutations in PARK2, which encodes E3 ubiquitin ligase parkin in the ubiquitin–proteasome system. These findings have shed light on DA neurodegeneration caused by accumulation of toxic protein species that can be degraded and/or detoxicated through parkin activity. In this review, we will focus on the regulatory roles of αSyn and parkin proteins in DA neuronal cell apoptosis and provide evidence for the possible therapeutic action of parkin in sporadic patients with PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

αSyn:

α-synuclein

DA:

Dopaminergic

EGF:

Epidermal growth factor

EGFR:

EGF receptor

JNK:

c-Jun N-terminal kinase

MAO:

Monoamine oxidase

MPTP:

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

NSC:

Neural stem cell

OB:

Olfactory bulb

Pael-R:

Parkin-associated endothelin receptor-like receptor

PD:

Parkinson’s disease

rAAV:

Recombinant adeno-associated virus

SNpc:

Substantia nigra pars compacta

References

  1. Farrer MJ (2006) Genetics of Parkinson disease: paradigm shifts and future prospects. Nat Rev Genet 7:306–318

    Article  CAS  PubMed  Google Scholar 

  2. Shults CW (2006) Lewy bodies. Proc Natl Acad Sci USA 103:1661–1668

    Article  CAS  PubMed  Google Scholar 

  3. Olanow CW (2008) Levodopa/dopamine replacement strategies in Parkinson’s disease–future directions. Mov Disord 23:S613–S622

    Article  PubMed  Google Scholar 

  4. Lotharius J, Brundin P (2002) Pathogenesis of Parkinson’s disease: dopamine, vesicles and alpha-synuclein. Nat Rev Neurosci 3:932–942

    Article  CAS  PubMed  Google Scholar 

  5. da Costa CA, Ancolio K, Checler F (2000) Wild-type but not Parkinson’s disease-related ala-53→ Thr mutant alpha -synuclein protects neuronal cells from apoptotic stimuli. J Biol Chem 275:24065–24069

    Article  CAS  PubMed  Google Scholar 

  6. Xu J, Kao SY, Lee FJ, Song W, Jin LW, Yankner BA (2002) Dopamine-dependent neurotoxicity of alpha-synuclein: a mechanism for selective neurodegeneration in Parkinson disease. Nat Med 8:600–606

    Article  CAS  PubMed  Google Scholar 

  7. Leng Y, Chuang DM (2006) Endogenous alpha-synuclein is induced by valproic acid through histone deacetylase inhibition and participates in neuroprotection against glutamate-induced excitotoxicity. J Neurosci 26:7502–7512

    Article  CAS  PubMed  Google Scholar 

  8. Conway KA, Rochet JC, Bieganski RM, Lansbury PT Jr (2001) Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct. Science 294:1346–1349

    Article  CAS  PubMed  Google Scholar 

  9. Yamada M, Iwatsubo T, Mizuno Y, Mochizuki H (2004) Overexpression of alpha-synuclein in rat substantia nigra results in loss of dopaminergic neurons, phosphorylation of alpha-synuclein and activation of caspase-9: resemblance to pathogenetic changes in Parkinson’s disease. J Neurochem 91:451–461

    Article  CAS  PubMed  Google Scholar 

  10. Yasuda T, Nihira T, Ren YR et al (2009) Effects of UCH-L1 on alpha-synuclein over-expression mouse model of Parkinson’s disease. J Neurochem 108:932–944

    Article  CAS  PubMed  Google Scholar 

  11. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile Parkinsonism. Nature 392:605–608

    Article  CAS  PubMed  Google Scholar 

  12. Takahashi H, Ohama E, Suzuki S, Horikawa Y, Ishikawa A, Morita T, Tsuji S, Ikuta F (1994) Familial juvenile Parkinsonism: clinical and pathologic study in a family. Neurology 44:437–441

    CAS  PubMed  Google Scholar 

  13. Mori H, Kondo T, Yokochi M, Matsumine H, Nakagawa-Hattori Y, Miyake T, Suda K, Mizuno Y (1998) Pathologic and biochemical studies of juvenile Parkinsonism linked to chromosome 6q. Neurology 51:890–892

    CAS  PubMed  Google Scholar 

  14. Hayashi S, Wakabayashi K, Ishikawa A et al (2000) An autopsy case of autosomal-recessive juvenile Parkinsonism with a homozygous exon 4 deletion in the parkin gene. Mov Disord 15:884–888

    Article  CAS  PubMed  Google Scholar 

  15. van de Warrenburg BP, Lammens M, Lucking CB et al (2001) Clinical and pathologic abnormalities in a family with Parkinsonism and parkin gene mutations. Neurology 56:555–557

    PubMed  Google Scholar 

  16. Savitt JM, Dawson VL, Dawson TM (2006) Diagnosis and treatment of Parkinson disease: molecules to medicine. J Clin Invest 116:1744–1754

    Article  CAS  PubMed  Google Scholar 

  17. Shimura H, Hattori N, Kubo S et al (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 25:302–305

    Article  CAS  PubMed  Google Scholar 

  18. Chung KK, Thomas B, Li X, Pletnikova O, Troncoso JC, Marsh L, Dawson VL, Dawson TM (2004) S-nitrosylation of parkin regulates ubiquitination and compromises parkin’s protective function. Science 304:1328–1331

    Article  CAS  PubMed  Google Scholar 

  19. Yao D, Gu Z, Nakamura T et al (2004) Nitrosative stress linked to sporadic Parkinson’s disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. Proc Natl Acad Sci USA 101:10810–10814

    Article  CAS  PubMed  Google Scholar 

  20. LaVoie MJ, Ostaszewski BL, Weihofen A, Schlossmacher MG, Selkoe DJ (2005) Dopamine covalently modifies and functionally inactivates parkin. Nat Med 11:1214–1221

    Article  CAS  PubMed  Google Scholar 

  21. Lim KL, Chew KC, Tan JM et al (2005) Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-1: implications for Lewy body formation. J Neurosci 25:2002–2009

    Article  CAS  PubMed  Google Scholar 

  22. Doss-Pepe EW, Chen L, Madura K (2005) Alpha-synuclein and parkin contribute to the assembly of ubiquitin lysine 63-linked multiubiquitin chains. J Biol Chem 280:16619–16624

    Article  CAS  PubMed  Google Scholar 

  23. Lim KL, Dawson VL, Dawson TM (2006) Parkin-mediated lysine 63-linked polyubiquitination: a link to protein inclusions formation in Parkinson’s and other conformational diseases? Neurobiol Aging 27:524–529

    Article  CAS  PubMed  Google Scholar 

  24. Mukhopadhyay D, Riezman H (2007) Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315:201–205

    Article  CAS  PubMed  Google Scholar 

  25. Goldberg MS, Fleming SM, Palacino JJ et al (2003) Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem 278:43628–43635

    Article  CAS  PubMed  Google Scholar 

  26. Itier JM, Ibanez P, Mena MA et al (2003) Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse. Hum Mol Genet 12:2277–2291

    Article  CAS  PubMed  Google Scholar 

  27. von Coelln R, Thomas B, Savitt JM, Lim KL, Sasaki M, Hess EJ, Dawson VL, Dawson TM (2004) Loss of locus coeruleus neurons and reduced startle in parkin null mice. Proc Natl Acad Sci USA 101:10744–10749

    Article  Google Scholar 

  28. Perez FA, Palmiter RD (2005) Parkin-deficient mice are not a robust model of Parkinsonism. Proc Natl Acad Sci USA 102:2174–2179

    Article  CAS  PubMed  Google Scholar 

  29. Palacino JJ, Sagi D, Goldberg MS, Krauss S, Motz C, Wacker M, Klose J, Shen J (2004) Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem 279:18614–18622

    Article  CAS  PubMed  Google Scholar 

  30. Frank-Cannon TC, Tran T, Ruhn KA et al (2008) Parkin deficiency increases vulnerability to inflammation-related nigral degeneration. J Neurosci 28:10825–10834

    Article  CAS  PubMed  Google Scholar 

  31. Park J, Lee SB, Lee S et al (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441:1157–1161

    Article  CAS  PubMed  Google Scholar 

  32. Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH, Yoo SJ, Hay BA, Guo M (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441:1162–1166

    Article  CAS  PubMed  Google Scholar 

  33. Yang Y, Gehrke S, Imai Y et al (2006) Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc Natl Acad Sci USA 103:10793–10798

    Article  CAS  PubMed  Google Scholar 

  34. Ng CH, Mok SZ, Koh C et al (2009) Parkin protects against LRRK2 G2019S mutant-induced dopaminergic neurodegeneration in Drosophila. J Neurosci 29:11257–11262

    Article  CAS  PubMed  Google Scholar 

  35. Vercammen L, Van der Perren A, Vaudano E, Gijsbers R, Debyser Z, Van den Haute C, Baekelandt V (2006) Parkin protects against neurotoxicity in the 6-hydroxydopamine rat model for Parkinson’s disease. Mol Ther 14:716–723

    Article  CAS  PubMed  Google Scholar 

  36. Paterna JC, Leng A, Weber E, Feldon J, Bueler H (2007) DJ-1 and parkin modulate dopamine-dependent behavior and inhibit MPTP-induced nigral dopamine neuron loss in mice. Mol Ther 15:698–704

    Article  CAS  PubMed  Google Scholar 

  37. Yamada M, Mizuno Y, Mochizuki H (2005) Parkin gene therapy for alpha-synucleinopathy: a rat model of Parkinson’s disease. Hum Gene Ther 16:262–270

    Article  CAS  PubMed  Google Scholar 

  38. Yasuda T, Miyachi S, Kitagawa R et al (2007) Neuronal specificity of alpha-synuclein toxicity and effect of parkin co-expression in primates. Neuroscience 144:743–753

    Article  CAS  PubMed  Google Scholar 

  39. Mochizuki H (2007) Gene therapy for Parkinson’s disease. Expert Rev Neurother 7:957–960

    Article  CAS  PubMed  Google Scholar 

  40. Mochizuki H, Yasuda T, Mouradian MM (2008) Advances in gene therapy for movement disorders. Neurotherapeutics 5:260–269

    Article  CAS  PubMed  Google Scholar 

  41. Mochizuki H (2009) Parkin gene therapy. Parkinsonism Relat Disord 15:S43–S45

    Article  PubMed  Google Scholar 

  42. Gorman AM (2008) Neuronal cell death in neurodegenerative diseases: recurring themes around protein handling. J Cell Mol Med 12:2263–2280

    Article  CAS  PubMed  Google Scholar 

  43. Hirsch EC, Hunot S, Faucheux B, Agid Y, Mizuno Y, Mochizuki H, Tatton WG, Tatton N, Olanow WC (1999) Dopaminergic neurons degenerate by apoptosis in Parkinson’s disease. Mov Disord 14:383–385

    Article  CAS  PubMed  Google Scholar 

  44. Vila M, Przedborski S (2003) Targeting programmed cell death in neurodegenerative diseases. Nat Rev Neurosci 4:365–375

    Article  CAS  PubMed  Google Scholar 

  45. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909

    Article  CAS  PubMed  Google Scholar 

  46. Mochizuki H, Goto K, Mori H, Mizuno Y (1996) Histochemical detection of apoptosis in Parkinson’s disease. J Neurol Sci 137:120–123

    Article  CAS  PubMed  Google Scholar 

  47. Mochizuki H, Mori H, Mizuno Y (1997) Apoptosis in neurodegenerative disorders. J Neural Transm Suppl 50:125–140

    CAS  PubMed  Google Scholar 

  48. Tatton NA, Maclean-Fraser A, Tatton WG, Perl DP, Olanow CW (1998) A fluorescent double-labeling method to detect and confirm apoptotic nuclei in Parkinson’s disease. Ann Neurol 44:S142–S148

    CAS  PubMed  Google Scholar 

  49. Anglade P, Vyas S, Javoy-Agid F (1997) Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol Histopathol 12:25–31

    CAS  PubMed  Google Scholar 

  50. Hartmann A, Hunot S, Michel PP (2000) Caspase-3: a vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson’s disease. Proc Natl Acad Sci USA 97:2875–2880

    Article  CAS  PubMed  Google Scholar 

  51. Mochizuki H, Hayakawa H, Migita M et al (2001) An AAV-derived Apaf-1 dominant negative inhibitor prevents MPTP toxicity as antiapoptotic gene therapy for Parkinson’s disease. Proc Natl Acad Sci USA 98:10918–10923

    Article  CAS  PubMed  Google Scholar 

  52. Vila M, Jackson-Lewis V, Vukosavic S, Djaldetti R, Liberatore G, Offen D, Korsmeyer SJ, Przedborski S (2001) Bax ablation prevents dopaminergic neurodegeneration in the 1-methyl- 4-phenyl-1, 2, 3, 6-tetrahydropyridine mouse model of Parkinson’s disease. Proc Natl Acad Sci USA 98:2837–2842

    Article  CAS  PubMed  Google Scholar 

  53. Perier C, Bove J, Wu DC et al (2007) Two molecular pathways initiate mitochondria-dependent dopaminergic neurodegeneration in experimental Parkinson’s disease. Proc Natl Acad Sci USA 104:8161–8166

    Article  CAS  PubMed  Google Scholar 

  54. Polymeropoulos MH, Lavedan C, Leroy E et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047

    Article  CAS  PubMed  Google Scholar 

  55. Kruger R, Kuhn W, Muller T et al (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18:106–108

    Article  CAS  PubMed  Google Scholar 

  56. Zarranz JJ, Alegre J, Gomez-Esteban JC et al (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55:164–173

    Article  CAS  PubMed  Google Scholar 

  57. Singleton AB, Farrer M, Johnson J et al (2003) Alpha-synuclein locus triplication causes Parkinson’s disease. Science 302:841

    Article  CAS  PubMed  Google Scholar 

  58. Nishioka K, Hayashi S, Farrer MJ et al (2006) Clinical heterogeneity of alpha-synuclein gene duplication in Parkinson’s disease. Ann Neurol 59:298–309

    Article  CAS  PubMed  Google Scholar 

  59. Farrer M, Maraganore DM, Lockhart P et al (2001) Alpha-synuclein gene haplotypes are associated with Parkinson’s disease. Hum Mol Genet 10:1847–1851

    Article  CAS  PubMed  Google Scholar 

  60. Gao HM, Kotzbauer PT, Uryu K, Leight S, Trojanowski JQ, Lee VM (2008) Neuroinflammation and oxidation/nitration of alpha-synuclein linked to dopaminergic neurodegeneration. J Neurosci 28:7687–7698

    Article  CAS  PubMed  Google Scholar 

  61. Hasegawa M, Fujiwara H, Nonaka T, Wakabayashi K, Takahashi H, Lee VM, Trojanowski JQ, Mann D, Iwatsubo T (2002) Phosphorylated alpha-synuclein is ubiquitinated in alpha-synucleinopathy lesions. J Biol Chem 277:49071–49076

    Article  CAS  PubMed  Google Scholar 

  62. Li W, West N, Colla E et al (2005) Aggregation promoting C-terminal truncation of alpha-synuclein is a normal cellular process and is enhanced by the familial Parkinson’s disease-linked mutations. Proc Natl Acad Sci USA 102:2162–2167

    Article  CAS  PubMed  Google Scholar 

  63. Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, Shen J, Takio K, Iwatsubo T (2002) Alpha-synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 4:160–164

    Article  CAS  PubMed  Google Scholar 

  64. Smith WW, Margolis RL, Li X, Troncoso JC, Lee MK, Dawson VL, Dawson TM, Iwatsubo T, Ross CA (2005) Alpha-synuclein phosphorylation enhances eosinophilic cytoplasmic inclusion formation in SH-SY5Y cells. J Neurosci 25:5544–5552

    Article  CAS  PubMed  Google Scholar 

  65. Chen L, Feany MB (2005) Alpha-synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease. Nat Neurosci 8:657–663

    Article  CAS  PubMed  Google Scholar 

  66. Gorbatyuk OS, Li S, Sullivan LF, Chen W, Kondrikova G, Manfredsson FP, Mandel RJ, Muzyczka N (2008) The phosphorylation state of Ser-129 in human alpha-synuclein determines neurodegeneration in a rat model of Parkinson disease. Proc Natl Acad Sci USA 105:763–768

    Article  CAS  PubMed  Google Scholar 

  67. McFarland NR, Fan Z, Xu K, Schwarzschild MA, Feany MB, Hyman BT, McLean PJ (2009) Alpha-synuclein S129 phosphorylation mutants do not alter nigrostriatal toxicity in a rat model of Parkinson disease. J Neuropathol Exp Neurol 68:515–524

    Article  CAS  PubMed  Google Scholar 

  68. Azeredo da Silveira S, Schneider BL, Cifuentes-Diaz C, Sage D, Abbas-Terki T, Iwatsubo T, Unser M, Aebischer P (2009) Phosphorylation does not prompt, nor prevent, the formation of alpha-synuclein toxic species in a rat model of Parkinson’s disease. Hum Mol Genet 18:872–887

    CAS  PubMed  Google Scholar 

  69. Tabrizi SJ, Orth M, Wilkinson JM, Taanman JW, Warner TT, Cooper JM, Schapira AH (2000) Expression of mutant alpha-synuclein causes increased susceptibility to dopamine toxicity. Hum Mol Genet 9:2683–2689

    Article  CAS  PubMed  Google Scholar 

  70. Zhou W, Hurlbert MS, Schaack J, Prasad KN, Freed CR (2000) Overexpression of human alpha-synuclein causes dopamine neuron death in rat primary culture and immortalized mesencephalon-derived cells. Brain Res 866:33–43

    Article  CAS  PubMed  Google Scholar 

  71. Junn E, Mouradian MM (2002) Human alpha-synuclein over-expression increases intracellular reactive oxygen species levels and susceptibility to dopamine. Neurosci Lett 320:146–150

    Article  CAS  PubMed  Google Scholar 

  72. Seo JH, Rah JC, Choi SH et al (2002) Alpha-synuclein regulates neuronal survival via Bcl-2 family expression and PI3/Akt kinase pathway. FASEB J 16:1826–1828

    CAS  PubMed  Google Scholar 

  73. Machida Y, Chiba T, Takayanagi A et al (2005) Common anti-apoptotic roles of parkin and alpha-synuclein in human dopaminergic cells. Biochem Biophys Res Commun 332:233–240

    Article  CAS  PubMed  Google Scholar 

  74. Ostrerova N, Petrucelli L, Farrer M, Mehta N, Choi P, Hardy J, Wolozin B (1999) Alpha-synuclein shares physical and functional homology with 14-3-3 proteins. J Neurosci 19:5782–5791

    CAS  PubMed  Google Scholar 

  75. Engelender S, Kaminsky Z, Guo X et al (1999) Synphilin-1 associates with alpha-synuclein and promotes the formation of cytosolic inclusions. Nat Genet 22:110–114

    Article  CAS  PubMed  Google Scholar 

  76. Ubl A, Berg D, Holzmann C, Kruger R, Berger K, Arzberger T, Bornemann A, Riess O (2002) 14-3-3 protein is a component of Lewy bodies in Parkinson’s disease-mutation analysis and association studies of 14-3-3 eta. Brain Res Mol Brain Res 108:33–39

    Article  CAS  PubMed  Google Scholar 

  77. Kawamoto Y, Akiguchi I, Nakamura S, Honjyo Y, Shibasaki H, Budka H (2002) 14-3-3 proteins in Lewy bodies in Parkinson disease and diffuse Lewy body disease brains. J Neuropathol Exp Neurol 61:245–253

    CAS  PubMed  Google Scholar 

  78. Wakabayashi K, Engelender S, Tanaka Y, Yoshimoto M, Mori F, Tsuji S, Ross CA, Takahashi H (2002) Immunocytochemical localization of synphilin-1, an alpha-synuclein-associated protein, in neurodegenerative disorders. Acta Neuropathol 103:209–214

    Article  CAS  PubMed  Google Scholar 

  79. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231–241

    Article  CAS  PubMed  Google Scholar 

  80. Brunet A, Bonni A, Zigmond MJ et al (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868

    Article  CAS  PubMed  Google Scholar 

  81. Welch K, Yuan J (2002) Releasing the nerve cell killers. Nat Med 8:564–565

    Article  CAS  PubMed  Google Scholar 

  82. Tanaka M, Kim YM, Lee G, Junn E, Iwatsubo T, Mouradian MM (2004) Aggresomes formed by alpha-synuclein and synphilin-1 are cytoprotective. J Biol Chem 279:4625–4631

    Article  CAS  PubMed  Google Scholar 

  83. Eyal A, Szargel R, Avraham E, Liani E, Haskin J, Rott R, Engelender S (2006) Synphilin-1A: an aggregation-prone isoform of synphilin-1 that causes neuronal death and is present in aggregates from alpha-synucleinopathy patients. Proc Natl Acad Sci USA 103:5917–5922

    Article  CAS  PubMed  Google Scholar 

  84. Marx FP, Holzmann C, Strauss KM et al (2003) Identification and functional characterization of a novel R621C mutation in the synphilin-1 gene in Parkinson’s disease. Hum Mol Genet 12:1223–1231

    Article  CAS  PubMed  Google Scholar 

  85. Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A, Sagara Y, Sisk A, Mucke L (2000) Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 287:1265–1269

    Article  CAS  PubMed  Google Scholar 

  86. van der Putten H, Wiederhold KH, Probst A et al (2000) Neuropathology in mice expressing human alpha-synuclein. J Neurosci 20:6021–6029

    PubMed  Google Scholar 

  87. Matsuoka Y, Vila M, Lincoln S et al (2001) Lack of nigral pathology in transgenic mice expressing human alpha-synuclein driven by the tyrosine hydroxylase promoter. Neurobiol Dis 8:535–539

    Article  CAS  PubMed  Google Scholar 

  88. Giasson BI, Duda JE, Quinn SM, Zhang B, Trojanowski JQ, Lee VM (2002) Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein. Neuron 34:521–533

    Article  CAS  PubMed  Google Scholar 

  89. Lee MK, Stirling W, Xu Y et al (2002) Human alpha-synuclein-harbouring familial Parkinson’s disease-linked Ala-53 > Thr mutation causes neurodegenerative disease with alpha-synuclein aggregation in transgenic mice. Proc Natl Acad Sci USA 99:8968–8973

    Article  CAS  PubMed  Google Scholar 

  90. Neumann M, Kahle PJ, Giasson BI et al (2002) Misfolded proteinase K-resistant hyperphosphorylated alpha-synuclein in aged transgenic mice with locomotor deterioration and in human alpha-synucleinopathies. J Clin Invest 110:1429–1439

    CAS  PubMed  Google Scholar 

  91. Richfield EK, Thiruchelvam MJ, Cory-Slechta DA, Wuertzer C, Gainetdinov RR, Caron MG, Di Monte DA, Federoff HJ (2002) Behavioural and neurochemical effects of wild-type and mutated human alpha-synuclein in transgenic mice. Exp Neurol 175:35–48

    Article  CAS  PubMed  Google Scholar 

  92. Rockenstein E, Mallory M, Hashimoto M, Song D, Shults CW, Lang I, Masliah E (2002) Differential neuropathological alterations in transgenic mice expressing alpha-synuclein from the platelet-derived growth factor and Thy-1 promoters. J Neurosci Res 68:568–578

    Article  CAS  PubMed  Google Scholar 

  93. Gispert S, Del Turco D, Garrett L et al (2003) Transgenic mice expressing mutant A53T human alpha-synuclein show neuronal dysfunction in the absence of aggregate formation. Mol Cell Neurosci 24:419–429

    Article  CAS  PubMed  Google Scholar 

  94. Hashimoto M, Rockenstein E, Masliah E (2003) Transgenic models of alpha-synuclein pathology: past, present, and future. Ann NY Acad Sci 991:171–188

    Article  CAS  PubMed  Google Scholar 

  95. Martin LJ, Pan Y, Price AC, Sterling W, Copeland NG, Jenkins NA, Price DL, Lee MK (2006) Parkinson’s disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J Neurosci 26:41–50

    Article  CAS  PubMed  Google Scholar 

  96. Masliah E, Rockenstein E, Adame A et al (2005) Effects of alpha-synuclein immunization in a mouse model of Parkinson’s disease. Neuron 46:857–868

    Article  CAS  PubMed  Google Scholar 

  97. Hashimoto M, Rockenstein E, Mante M, Crews L, Bar-On P, Gage FH, Marr R, Masliah E (2004) An antiaggregation gene therapy strategy for Lewy body disease utilizing beta-synuclein lentivirus in a transgenic model. Gene Ther 11:1713–1723

    Article  CAS  PubMed  Google Scholar 

  98. Spencer B, Potkar R, Trejo M, Rockenstein E, Patrick C, Gindi R, Adame A, Wyss-Coray T, Masliah E (2009) Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson’s and Lewy body diseases. J Neurosci 29:13578–13588

    Article  CAS  PubMed  Google Scholar 

  99. Song DD, Shults CW, Sisk A, Rockenstein E, Masliah E (2004) Enhanced substantia nigra mitochondrial pathology in human alpha-synuclein transgenic mice after treatment with MPTP. Exp Neurol 186:158–172

    Article  CAS  PubMed  Google Scholar 

  100. Dauer W, Kholodilov N, Vila M (2002) Resistance of alpha -synuclein null mice to the Parkinsonian neurotoxin MPTP. Proc Natl Acad Sci USA 99:14524–14529

    Article  CAS  PubMed  Google Scholar 

  101. Kirik D, Rosenblad C, Burger C, Lundberg C, Johansen TE, Muzyczka N, Mandel RJ, Bjorklund A (2002) Parkinson-like neurodegeneration induced by targeted overexpression of alpha-synuclein in the nigrostriatal system. J Neurosci 22:2780–2791

    CAS  PubMed  Google Scholar 

  102. Klein RL, King MA, Hamby ME, Meyer EM (2002) Dopaminergic cell loss induced by human A30P alpha-synuclein gene transfer to the rat substantia nigra. Hum Gene Ther 13:605–612

    Article  CAS  PubMed  Google Scholar 

  103. Lo Bianco C, Ridet JL, Schneider BL, Deglon N, Aebischer P (2002) Alpha-synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson’s disease. Proc Natl Acad Sci USA 99:10813–10818

    Article  CAS  PubMed  Google Scholar 

  104. Lauwers E, Debyser Z, Van Dorpe J, De Strooper B, Nuttin B, Baekelandt V (2003) Neuropathology and neurodegeneration in rodent brain induced by lentiviral vector-mediated overexpression of alpha-synuclein. Brain Pathol 13:364–372

    Article  CAS  PubMed  Google Scholar 

  105. Kirik D, Annett LE, Burger C, Muzyczka N, Mandel RJ, Bjorklund A (2003) Nigrostriatal alpha-synucleinopathy induced by viral vector-mediated overexpression of human alpha-synuclein: a new primate model of Parkinson’s disease. Proc Natl Acad Sci USA 100:2884–2889

    Article  CAS  PubMed  Google Scholar 

  106. Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14:504–506

    Article  CAS  PubMed  Google Scholar 

  107. Kordower JH, Chu Y, Hauser RA, Olanow CW, Freeman TB (2008) Transplanted dopaminergic neurons develop PD pathologic changes: a second case report. Mov Disord 23:2303–2306

    Article  PubMed  Google Scholar 

  108. Li JY, Englund E, Holton JL et al (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14:501–503

    Article  CAS  PubMed  Google Scholar 

  109. Desplats P, Lee HJ, Bae EJ, Patrick C, Rockenstein E, Crews L, Spencer B, Masliah E, Lee SJ (2009) Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci USA 106:13010–13015

    Article  CAS  PubMed  Google Scholar 

  110. Winner B, Lie DC, Rockenstein E, Aigner R, Aigner L, Masliah E, Kuhn HG, Winkler J (2004) Human wild-type alpha-synuclein impairs neurogenesis. J Neuropathol Exp Neurol 63:1155–1166

    CAS  PubMed  Google Scholar 

  111. Crews L, Mizuno H, Desplats P, Rockenstein E, Adame A, Patrick C, Winner B, Winkler J, Masliah E (2008) Alpha-synuclein alters Notch-1 expression and neurogenesis in mouse embryonic stem cells and in the hippocampus of transgenic mice. J Neurosci 28:4250–4260

    Article  CAS  PubMed  Google Scholar 

  112. Marxreiter F, Nuber S, Kandasamy M et al (2009) Changes in adult olfactory bulb neurogenesis in mice expressing the A30P mutant form of alpha-synuclein. Eur J Neurosci 29:879–890

    Article  PubMed  Google Scholar 

  113. Sengoku R, Saito Y, Ikemura M et al (2008) Incidence and extent of Lewy body-related alpha-synucleinopathy in aging human olfactory bulb. J Neuropathol Exp Neurol 67:1072–1083

    Article  PubMed  Google Scholar 

  114. Ross GW, Petrovitch H, Abbott RD, Tanner CM, Popper J, Masaki K, Launer L, White LR (2008) Association of olfactory dysfunction with risk for future Parkinson’s disease. Ann Neurol 63:167–173

    Article  PubMed  Google Scholar 

  115. Ponsen MM, Stoffers D, Twisk JW, Wolters ECh, Berendse HW (2009) Hyposmia and executive dysfunction as predictors of future Parkinson’s disease: a prospective study. Mov Disord 24:1060–1065

    Article  PubMed  Google Scholar 

  116. Oliveira SA, Scott WK, Martin ER et al (2003) Parkin mutations and susceptibility alleles in late-onset Parkinson’s disease. Ann Neurol 53:624–629

    Article  CAS  PubMed  Google Scholar 

  117. Yamamura Y, Hattori N, Matsumine H, Kuzuhara S, Mizuno Y (2000) Autosomal recessive early-onset Parkinsonism with diurnal fluctuation: clinicopathologic characteristics and molecular genetic identification. Brain Dev 22:S87–S91

    Article  PubMed  Google Scholar 

  118. Schlossmacher MG, Frosch MP, Gai WP et al (2002) Parkin localizes to the Lewy bodies of Parkinson disease and dementia with Lewy bodies. Am J Pathol 160:1655–1667

    CAS  PubMed  Google Scholar 

  119. Avraham E, Rott R, Liani E, Szargel R, Engelender S (2007) Phosphorylation of Parkin by the cyclin-dependent kinase 5 at the linker region modulates its ubiquitin-ligase activity and aggregation. J Biol Chem 282:12842–12850

    Article  CAS  PubMed  Google Scholar 

  120. Kim Y, Park J, Kim S, Song S, Kwon SK, Lee SH, Kitada T, Kim JM, Chung J (2008) PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. Biochem Biophys Res Commun 377:975–980

    Article  CAS  PubMed  Google Scholar 

  121. Sha D, Chin LS, Li L (2010) Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-kappaB signaling. Hum Mol Genet 19:352–363

    Article  CAS  PubMed  Google Scholar 

  122. Kalia SK, Lee S, Smith PD et al (2004) BAG5 inhibits parkin and enhances dopaminergic neuron degeneration. Neuron 44:931–945

    Article  CAS  PubMed  Google Scholar 

  123. Chung KK, Zhang Y, Lim KL, Tanaka Y, Huang H, Gao J, Ross CA, Dawson VL, Dawson TM (2001) Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat Med 7:1144–1150

    Article  CAS  PubMed  Google Scholar 

  124. Ciechanover A (2001) Linking ubiquitin, parkin and synphilin-1. Nat Med 7:1108–1109

    Article  CAS  PubMed  Google Scholar 

  125. Junn E, Lee SS, Suhr UT, Mouradian MM (2002) Parkin accumulation in aggresomes due to proteasome impairment. J Biol Chem 277:47870–47877

    Article  CAS  PubMed  Google Scholar 

  126. Ardley HC, Scott GB, Rose SA, Tan NG, Markham AF, Robinson PA (2003) Inhibition of proteasomal activity causes inclusion formation in neuronal and non-neuronal cells overexpressing parkin. Mol Biol Cell 14:4541–4556

    Article  CAS  PubMed  Google Scholar 

  127. Zhao J, Ren Y, Jiang Q, Feng J (2003) Parkin is recruited to the centrosome in response to inhibition of proteasomes. J Cell Sci 116:4011–4019

    Article  CAS  PubMed  Google Scholar 

  128. Muqit MM, Davidson SM, Payne Smith MD, MacCormac LP, Kahns S, Jensen PH, Wood NW, Latchman DS (2004) Parkin is recruited into aggresomes in a stress-specific manner: over-expression of parkin reduces aggresome formation but can be dissociated from parkin’s effect on neuronal survival. Hum Mol Genet 13:117–135

    Article  CAS  PubMed  Google Scholar 

  129. Jiang Q, Ren Y, Feng J (2008) Direct binding with histone deacetylase 6 mediates the reversible recruitment of parkin to the centrosome. J Neurosci 28:12993–13002

    Article  CAS  PubMed  Google Scholar 

  130. Moore DJ (2006) Parkin: a multifaceted ubiquitin ligase. Biochem Soc Trans 34:749–753

    Article  CAS  PubMed  Google Scholar 

  131. Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, Yao TP (2003) The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115:727–738

    Article  CAS  PubMed  Google Scholar 

  132. Olzmann JA, Li L, Chudaev MV, Chen J, Perez FA, Palmiter RD, Chin LS (2007) Parkin-mediated K63-linked polyubiquitination targets misfolded DJ-1 to aggresomes via binding to HDAC6. J Cell Biol 178:1025–1038

    Article  CAS  PubMed  Google Scholar 

  133. Kitada T, Tong Y, Gautier CA, Shen J (2009) Absence of nigral degeneration in aged parkin/DJ-1/PINK1 triple knockout mice. J Neurochem 111:696–702

    Article  CAS  PubMed  Google Scholar 

  134. Wang HQ, Imai Y, Inoue H, Kataoka A, Iita S, Nukina N, Takahashi R (2008) Pael-R transgenic mice crossed with parkin deficient mice displayed progressive and selective catecholaminergic neuronal loss. J Neurochem 107:171–185

    Article  CAS  PubMed  Google Scholar 

  135. Greene JC, Whitworth AJ, Kuo I, Andrews LA, Feany MB, Pallanck LJ (2003) Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci USA 100:4078–4083

    Article  CAS  PubMed  Google Scholar 

  136. Whitworth AJ, Theodore DA, Greene JC, Benes H, Wes PD, Pallanck LJ (2005) Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson’s disease. Proc Natl Acad Sci USA 102:8024–8029

    Article  CAS  PubMed  Google Scholar 

  137. Cha GH, Kim S, Park J, Lee E, Kim M, Lee SB, Kim JM, Chung J, Cho KS (2005) Parkin negatively regulates JNK pathway in the dopaminergic neurons of Drosophila. Proc Natl Acad Sci USA 102:10345–10350

    Article  CAS  PubMed  Google Scholar 

  138. Poole AC, Thomas RE, Andrews LA, McBride HM, Whitworth AJ, Pallanck LJ (2008) The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci USA 105:1638–1643

    Article  CAS  PubMed  Google Scholar 

  139. Deng H, Dodson MW, Huang H, Guo M (2008) The Parkinson’s disease genes PINK1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc Natl Acad Sci USA 105:14503–14508

    Article  CAS  PubMed  Google Scholar 

  140. Whitworth AJ, Pallanck LJ (2009) The PINK1/Parkin pathway: a mitochondrial quality control system? J Bioenerg Biomembr 41:499–503

    Article  CAS  PubMed  Google Scholar 

  141. Mortiboys H, Thomas KJ, Koopman WJ et al (2008) Mitochondrial function and morphology are impaired in parkin-mutant fibroblasts. Ann Neurol 64:555–565

    Article  CAS  PubMed  Google Scholar 

  142. Wang C, Lu R, Ouyang X, Ho MW, Chia W, Yu F, Lim KL (2007) Drosophila overexpressing parkin R275W mutant exhibits dopaminergic neuron degeneration and mitochondrial abnormalities. J Neurosci 27:8563–8570

    Article  CAS  PubMed  Google Scholar 

  143. Lu XH, Fleming SM, Meurers B et al (2009) Bacterial artificial chromosome transgenic mice expressing a truncated mutant parkin exhibit age-dependent hypokinetic motor deficits, dopaminergic neuron degeneration, and accumulation of proteinase K-resistant alpha-synuclein. J Neurosci 29:1962–1976

    Article  PubMed  CAS  Google Scholar 

  144. Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183:795–803

    Article  CAS  PubMed  Google Scholar 

  145. Narendra D, Tanaka A, Suen DF, Youle RJ (2009) Parkin-induced mitophagy in the pathogenesis of Parkinson disease. Autophagy 5:706–708

    Article  CAS  PubMed  Google Scholar 

  146. Berger AK, Cortese GP, Amodeo KD, Weihofen A, Letai A, LaVoie MJ (2009) Parkin selectively alters the intrinsic threshold for mitochondrial cytochrome c release. Hum Mol Genet 18:4317–4328

    Article  CAS  PubMed  Google Scholar 

  147. da Costa CA, Sunyach C, Giaime E et al (2009) Transcriptional repression of p53 by parkin and impairment by mutations associated with autosomal recessive juvenile Parkinson’s disease. Nat Cell Biol 11:1370–1375

    Article  PubMed  CAS  Google Scholar 

  148. Jiang H, Jiang Q, Liu W, Feng J (2006) Parkin suppresses the expression of monoamine oxidases. J Biol Chem 281:8591–8599

    Article  CAS  PubMed  Google Scholar 

  149. Ren Y, Jiang H, Yang F, Nakaso K, Feng J (2009) Parkin protects dopaminergic neurons against microtubule-depolymerizing toxins by attenuating microtubule-associated protein kinase activation. J Biol Chem 284:4009–4017

    Article  CAS  PubMed  Google Scholar 

  150. Hasegawa T, Treis A, Patenge N, Fiesel FC, Springer W, Kahle PJ (2008) Parkin protects against tyrosinase-mediated dopamine neurotoxicity by suppressing stress-activated protein kinase pathways. J Neurochem 105:1700–1715

    Article  CAS  PubMed  Google Scholar 

  151. Hunot S, Vila M, Teismann P, Davis RJ, Hirsch EC, Przedborski S, Rakic P, Flavell RA (2004) JNK-mediated induction of cyclooxygenase 2 is required for neurodegeneration in a mouse model of Parkinson’s disease. Proc Natl Acad Sci USA 101:665–670

    Article  CAS  PubMed  Google Scholar 

  152. Fallon L, Belanger CM, Corera AT et al (2006) A regulated interaction with the UIM protein Eps15 implicates parkin in EGF receptor trafficking and PI(3)K-Akt signalling. Nat Cell Biol 8:834–842

    Article  CAS  PubMed  Google Scholar 

  153. Ries V, Henchcliffe C, Kareva T, Rzhetskaya M, Bland R, During MJ, Kholodilov N, Burke RE (2006) Oncoprotein Akt/PKB induces trophic effects in murine models of Parkinson’s disease. Proc Natl Acad Sci USA 103:18757–18762

    Article  CAS  PubMed  Google Scholar 

  154. Henn IH, Bouman L, Schlehe JS et al (2007) Parkin mediates neuroprotection through activation of IkappaB kinase/nuclear factor-kappaB signaling. J Neurosci 27:1868–1878

    Article  CAS  PubMed  Google Scholar 

  155. Petrucelli L, O’Farrell C, Lockhart PJ et al (2002) Parkin protects against the toxicity associated with mutant alpha-synuclein: proteasome dysfunction selectively affects catecholaminergic neurons. Neuron 36:1007–1019

    Article  CAS  PubMed  Google Scholar 

  156. Kim SJ, Sung JY, Um JW, Hattori N, Mizuno Y, Tanaka K, Paik SR, Kim J, Chung KC (2003) Parkin cleaves intracellular alpha-synuclein inclusions via the activation of calpain. J Biol Chem 278:41890–41899

    Article  CAS  PubMed  Google Scholar 

  157. Yang Y, Nishimura I, Imai Y, Takahashi R, Lu B (2003) Parkin suppresses dopaminergic neuron-selective neurotoxicity induced by Pael-R in Drosophila. Neuron 37:911–924

    Article  CAS  PubMed  Google Scholar 

  158. Lo Bianco C, Schneider BL, Bauer M, Sajadi A, Brice A, Iwatsubo T, Aebischer P (2004) Lentiviral vector delivery of parkin prevents dopaminergic degeneration in an alpha-synuclein rat model of Parkinson’s disease. Proc Natl Acad Sci USA 101:17510–17515

    Article  CAS  PubMed  Google Scholar 

  159. Klein RL, Dayton RD, Henderson KM, Petrucelli L (2006) Parkin is protective for substantia nigra dopamine neurons in a tau gene transfer neurodegeneration model. Neurosci Lett 401:130–135

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Program for Promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation (NIBIO); Grants-in-Aid from the Research Committee of CNS Degenerative Diseases, the Ministry of Health, Labour and Welfare of Japan; the Research Grant for Longevity Sciences from the Ministry of Health, Labour and Welfare of Japan; and grants (#S0801035) from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Toru Yasuda or Hideki Mochizuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yasuda, T., Mochizuki, H. The regulatory role of α-synuclein and parkin in neuronal cell apoptosis; possible implications for the pathogenesis of Parkinson’s disease. Apoptosis 15, 1312–1321 (2010). https://doi.org/10.1007/s10495-010-0486-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-010-0486-8

Keywords

Navigation