Skip to main content
Log in

NF-κB activation is required for apoptosis in fibrocystin/polyductin-depleted kidney epithelial cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Autosomal recessive polycystic kidney disease (ARPKD) is caused by mutations in PKHD1, a gene encoding fibrocystin/polyductin (FC1), a membrane-associated receptor-like protein involved in the regulation of tubular cell adhesion, proliferation and apoptosis. Although it is generally accepted that apoptosis is implicated in ARPKD, the question of whether increased apoptosis is a normal response to abnormal cell proliferation or, instead, it is a primary event, is still subject to debate. In support of the latter hypothesis, we hereby provide evidence that apoptosis occurs in the absence of hyper-proliferation of FC1-depleted kidney cells. In fact, a decrease in cell proliferation, with a concomitant increase in apoptotic index and caspase-3 activity was observed in response to FC1-depletion by PKHD1 siRNA silencing in HEK293 and 4/5 tubular cells. FC1-depletion also induced reduction in ERK1/2 kinase activation, upregulation of the pro-apoptotic protein p53 and activation of NF-κB, a transcription factor which reduces apoptosis in many organs and tissues. Interestingly, selective inactivation of NF-κB using either an NF-κB decoy or parthenolide, a blocker of IKK-dependent NF-κB activation, reduced, rather then increased, apoptosis and p53 levels in FC1-depleted cells. Therefore, the proapoptotic function of NF-κB during cell death by FC1-depletion in kidney cells is evident.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Guay-Woodford L (2003) Desmond R autosomal recessive polycystic kidney disease (ARPKD): the clinical experience in North America. Pediatrics 111:1072–1080

    Article  PubMed  Google Scholar 

  2. Zerres K, Rudnik-Schöneborn S, Senderek J, Eggermann T, Bergmann C (2003) Autosomal recessive polycystic kidney disease (ARPKD). J Nephrol 16:453–458

    CAS  PubMed  Google Scholar 

  3. Menezes LF, Cai Y, Nagasawa Y et al (2004) Polyductin, the PKHD1 gene product, comprises isoforms expressed in plasma membrane, primary cilium, and cytoplasm. Kidney Int 66:1345–1355

    Article  CAS  PubMed  Google Scholar 

  4. Wang S, Zhang J, Nauli SM et al (2007) Fibrocystin/polyductin, found in the same protein complex with polycystin-2, regulates calcium responses in kidney epithelia. Mol Cell Biol 27:3241–3252

    Article  CAS  PubMed  Google Scholar 

  5. Harris PC, Torres VE (2009) Polycystic kidney disease. Annu Rev Med 60:321–337

    Article  CAS  PubMed  Google Scholar 

  6. Kuure S, Vuolteenaho R, Vainio S (2000) Kidney morphogenesis: cellular and molecular regulation. Mech Dev 92:31–45

    Article  CAS  PubMed  Google Scholar 

  7. Woo D (1995) Apoptosis and loss of renal tissue in polycystic kidney diseases. N Engl J Med 333:18–25

    Article  CAS  PubMed  Google Scholar 

  8. Kip SN, Hunter LW, Ren Q et al (2005) [Ca2+]i reduction increases cellular proliferation and apoptosis in vascular smooth muscle cells: relevance to the ADPKD phenotype. Circ Res 96:873–880

    Article  CAS  PubMed  Google Scholar 

  9. Bukanov NO, Smith LA, Klinger KW, Ledbetter SR, Ibraghimov-Beskrovnaya O (2006) Long-lasting arrest of murine polycystic kidney disease with CDK inhibitor roscovitine. Nature 444:949–952

    Article  CAS  PubMed  Google Scholar 

  10. Starremans PG, Li X, Finnerty PE, Guo L et al (2008) A mouse model for polycystic kidney disease through a somatic in-frame deletion in the 5′ end of Pkd1. Kidney Int 73:1394–1405

    Article  CAS  PubMed  Google Scholar 

  11. Goilav B, Satlin LM, Wilson PD (2008) Pathways of apoptosis in human autosomal recessive and autosomal dominant polycystic kidney diseases. Pediatr Nephrol 23:1473–1482

    Article  PubMed  Google Scholar 

  12. Shen HM, Tergaonkar V (2009) NFkappaB signaling in carcinogenesis and as a potential molecular target for cancer therapy. Apoptosis 14:348–363

    Article  CAS  PubMed  Google Scholar 

  13. Grimm S, Bauer MK, Baeuerle PA (1996) Schulze-Osthoff K.Bcl-2 down-regulates the activity of transcription factor NF-kappaB induced upon apoptosis. J Cell Biol 134:13–23

    Article  CAS  PubMed  Google Scholar 

  14. Baichwal VR, Baeuerle PA (1997) Activate NF-kappa B or die? Curr Biol 7:R94–R96

    Article  CAS  PubMed  Google Scholar 

  15. Burstein E, Duckett CS (2003) Dying for NF-kappaB? Control of cell death by transcriptional regulation of the apoptotic machinery. Curr Opin Cell Biol 15:732–737

    Article  CAS  PubMed  Google Scholar 

  16. Aguiari G, Trimi V, Bogo M et al (2008) Novel role for polycystin-1 in modulating cell proliferation through calcium oscillations in kidney cells. Cell Prolif 41:554–573

    Article  CAS  PubMed  Google Scholar 

  17. Wang S, Luo Y, Wilson PD, Witman GB, Zhou J (2004) The autosomal recessive polycystic kidney disease protein is localized to primary cilia, with concentration in the basal body area. J Am Soc Nephrol 15:592–602

    Article  PubMed  Google Scholar 

  18. Nagano J, Kitamura K, Hujer KM et al (2005) Fibrocystin interacts with CAML, a protein involved in Ca2+ signaling. Biochem Biophys Res Commun 338:880–889

    Article  CAS  PubMed  Google Scholar 

  19. Aguiari G, Varani K, Bogo M et al (2009) Deficiency of polycystic kidney disease-1 gene (PKD1) expression increases A(3) adenosine receptors in human renal cells: Implications for cAMP-dependent signalling and proliferation of PKD1-mutated cystic cells. Biochim Biophys Acta 1792:531–540

    CAS  PubMed  Google Scholar 

  20. Ward CJ, Yuan D, Masyuk TV et al (2003) Cellular and subcellular localization of the ARPKD protein; fibrocystin is expressed on primary cilia. Hum Mol Genet 12:2703–2710

    Article  CAS  PubMed  Google Scholar 

  21. Aguiari G, Banzi M, Gessi S et al (2004) Deficiency of polycystin-2 reduces Ca2+ channel activity and cell proliferation in ADPKD lymphoblastoid cells. FASEB J 18:884–886

    CAS  PubMed  Google Scholar 

  22. Aguiari G, Campanella M, Manzati E et al (2003) Expression of polycystin-1 C-terminal fragment enhances the ATP-induced Ca2+ release in human kidney cells. Biochem Biophys Res Commun 301:657–664

    Article  CAS  PubMed  Google Scholar 

  23. Manzati E, Aguiari G, Banzi M et al (2005) The cytoplasmic C-terminus of polycystin-1 increases cell proliferation in kidney epithelial cells through serum-activated and Ca(2+)-dependent pathway(s). Exp Cell Res 304:391–406

    Article  CAS  PubMed  Google Scholar 

  24. Guijarro C, Egido J (2001) Transcription factor-kappa B (NF-kappa B) and renal disease. Kidney Int 59:415–424

    Article  CAS  PubMed  Google Scholar 

  25. Zhang S, Lin ZN, Yang CF, Shi X, Ong CN, Shen HM (2004) Suppressed NF-kappaB and sustained JNK activation contribute to the sensitization effect of parthenolide to TNF-alpha-induced apoptosis in human cancer cells. Carcinogenesis 25:2191–2199

    Article  CAS  PubMed  Google Scholar 

  26. Borgatti M, Finotti A, Romanelli A et al (2004) Peptide nucleic acids (PNA)-DNA chimeras targeting transcription factors as a tool to modify gene expression. Curr Drug Targets 5:735–744

    Article  CAS  PubMed  Google Scholar 

  27. Kim I, Fu Y, Hui K et al (2008) Fibrocystin/polyductin modulates renal tubular formation by regulating polycystin-2 expression and function. J Am Soc Nephrol 19:455–468

    Article  CAS  PubMed  Google Scholar 

  28. Wegierski T, Steffl D, Kopp C et al (2009) TRPP2 channels regulate apoptosis through the Ca2+ concentration in the endoplasmic reticulum. EMBO J 28:490–499

    Article  CAS  PubMed  Google Scholar 

  29. Lanoix J, D’Agati V, Szabolcs M, Trudel M (1996) Dysregulation of cellular proliferation and apoptosis mediates human autosomal dominant polycystic kidney disease (ADPKD). Oncogene 13:1153–1160

    CAS  PubMed  Google Scholar 

  30. Boletta A, Qian F, Onuchic LF, Bhunia AK et al (2000) Polycystin-1, the gene product of PKD1, induces resistance to apoptosis and spontaneous tubulogenesis in MDCK cells. Mol Cell 6:1267–1273

    Article  CAS  PubMed  Google Scholar 

  31. Tao Y, Kim J, Faubel S et al (2005) Caspase inhibition reduces tubular apoptosis and proliferation and slows disease progression in polycystic kidney disease. Proc Natl Acad Sci USA 102:6954–6959

    Article  CAS  PubMed  Google Scholar 

  32. Woods JS, Ellis ME, Dieguez-Acuña FJ, Corral J (1999) Activation of NF-kappaB in normal rat kidney epithelial (NRK52E) cells is mediated via a redox-insensitive, calcium-dependent pathway. Toxicol Appl Pharmacol 154:219–227

    Article  CAS  PubMed  Google Scholar 

  33. Dieguez-Acuña FJ, Polk WW, Ellis ME, Simmonds PL, Kushleika JV, Woods JS (2004) Nuclear factor kappaB activity determines the sensitivity of kidney epithelial cells to apoptosis: implications for mercury-induced renal failure. Toxicol Sci 82:114–123

    Article  PubMed  Google Scholar 

  34. Edelstein CL (2005) What is the role of tubular epithelial cell apoptosis in polycystic kidney disease (PKD)? Cell Cycle 4:1550–1554

    CAS  PubMed  Google Scholar 

  35. Torres VE, Harris PC (2006) Mechanisms of disease: autosomal dominant and recessive polycystic kidney diseases. Nat Clin Pract Nephrol 2:40–55

    Article  CAS  PubMed  Google Scholar 

  36. Mai W, Chen D, Ding T et al (2005) Inhibition of Pkhd1 impairs tubulomorphogenesis of cultured IMCD cells. Mol Biol Cell 16:4398–4409

    Article  CAS  PubMed  Google Scholar 

  37. Cance WG, Golubovskaya VM (2008) Focal adhesion kinase versus p53: apoptosis or survival? Sci Signal 1(20):pe22

    Article  PubMed  Google Scholar 

  38. Yang J, Zhang S, Zhou Q et al (2007) PKHD1 gene silencing may cause cell abnormal proliferation through modulation of intracellular calcium in autosomal recessive polycystic kidney disease. J Biochem Mol Biol 40:467–474

    CAS  PubMed  Google Scholar 

  39. Wu H, Lozano G (1994) NF-kappa B activation of p53. A potential mechanism for suppressing cell growth in response to stress. J Biol Chem 269:20067–20074

    CAS  PubMed  Google Scholar 

  40. Ryan KM, Ernst MK, Rice NR, Vousden KH (2000) Role of NF-kappaB in p53-mediated programmed cell death. Nature 404:892–897

    Article  CAS  PubMed  Google Scholar 

  41. Kim I, Li C, Liang D et al (2008) Polycystin-2 expression is regulated by a PC2-binding domain in the intracellular portion of fibrocystin. J Biol Chem 283:31559–31566

    Article  CAS  PubMed  Google Scholar 

  42. Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R (2008) Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene 27:6407–6418

    Article  CAS  PubMed  Google Scholar 

  43. Morrissey J, Klahr S (1998) Transcription factor NF-kappaB regulation of renal fibrosis during ureteral obstruction. Semin Nephrol 18:603–611

    CAS  PubMed  Google Scholar 

  44. Tamada S, Asai T, Kuwabara N et al (2006) Molecular mechanisms and therapeutic strategies of chronic renal injury: the role of nuclear factor kappaB activation in the development of renal fibrosis. J Pharmacol Sci 100:17–21

    Article  CAS  PubMed  Google Scholar 

  45. Guzik TJ (2007) Harrison DG.Endothelial NF-kappaB as a mediator of kidney damage: the missing link between systemic vascular and renal disease? Circ Res 101:227–229

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Johannes A. Schmid (Medical University, Vienna, Austria) for providing NFkB-GFP plasmid, Anna Forster for correcting the manuscript and I. Maestri and A. Canella for technical assistance. This work was supported by Cassa di Risparmio di Ferrara, Cassa di Risparmio di Cento, Italian MIUR COFIN 2008 and Regione Emilia Romagna (Ricerca Regione-Università) 2007–2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura del Senno.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 68 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mangolini, A., Bogo, M., Durante, C. et al. NF-κB activation is required for apoptosis in fibrocystin/polyductin-depleted kidney epithelial cells. Apoptosis 15, 94–104 (2010). https://doi.org/10.1007/s10495-009-0426-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-009-0426-7

Keywords

Navigation