Skip to main content

Advertisement

Log in

Endoplasmic reticulum stress mediates γ-tocotrienol-induced apoptosis in mammary tumor cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

γ-Tocotrienol, a member of the vitamin E family of compounds, induces apoptosis in a variety of cancer cell types. However, previous studies have clearly demonstrated that γ-tocotrienol-induced apoptosis in neoplastic mouse +SA mammary epithelial cells is not mediated through mitochondrial stress or death receptor apoptotic signaling. Therefore, studies were conducted to determine the role of endoplasmic reticulum (ER) stress in mediating γ-tocotrienol-induced apoptosis in +SA mammary tumor cells. Treatment with 15–40 μM γ-tocotrienol induced +SA cell death in a dose-responsive manner, and these effects were associated with a corresponding increase in poly (ADP-ribose) polymerase (PARP)-cleavage and activation of protein kinase-like endoplasmic reticulum kinase/eukaryotic translational initiation factor/activating transcription factor 4 (PERK/eIF2α/ATF-4) pathway, a marker of ER stress response. These treatments also caused a large increase in C/EBP homologous protein (CHOP) levels, a key component of ER stress mediated apoptosis that increases expression of tribbles 3 (TRB3). Knockdown of CHOP by specific siRNAs attenuated γ-tocotrienol-induced PARP-cleavage, CHOP and TRB3 expression. γ-Tocotrienol treatment also reduced full-length caspase-12 levels, an indication of caspase-12 cleavage and activation. Intracellular levels of 3-hydroxy-3-methylglutaryl-coenzyme A (HMGCoA) reductase, an ER-transmembrane enzyme catalyzing the synthesis of mevalonate, decreased following γ-tocotrienol treatment, but combined treatment with mevalonate did not reverse γ-tocotrienol-induced apoptosis, suggesting that a decrease in HMGCoA reductase activity is not required for γ-tocotrienol induced apoptosis. These results demonstrate that ER stress apoptotic signaling is associated with γ-tocotrienol-induced apoptosis in +SA mammary tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yap WN, Chang PN, Han HY, Lee DT, Ling MT et al (2008) Gamma-tocotrienol suppresses prostate cancer cell proliferation and invasion through multiple-signalling pathways. Br J Cancer 99:1832–1841. doi:10.1038/sj.bjc.6604763

    Article  PubMed  CAS  Google Scholar 

  2. Wada S, Satomi Y, Murakoshi M, Noguchi N, Yoshikawa T et al (2005) Tumor suppressive effects of tocotrienol in vivo and in vitro. Cancer Lett 229:181–191. doi:10.1016/j.canlet.2005.06.036

    Article  PubMed  CAS  Google Scholar 

  3. Sun W, Xu W, Liu H, Liu J, Wang Q et al (2009) Gamma-tocotrienol induces mitochondria-mediated apoptosis in human gastric adenocarcinoma SGC-7901 cells. J Nutr Biochem 20:276–284. doi:10.1016/j.jnutbio.2008.03.003

    Article  PubMed  CAS  Google Scholar 

  4. Sen CK, Khanna S, Roy S (2006) Tocotrienols: vitamin E beyond tocopherols. Life Sci 78:2088–2098. doi:10.1016/j.lfs.2005.12.001

    Article  PubMed  CAS  Google Scholar 

  5. Sylvester PW (2007) Vitamin E and apoptosis. Vitam Horm 76:329–356. doi:10.1016/S0083-6729(07)76012-0

    Article  PubMed  CAS  Google Scholar 

  6. McIntyre BS, Briski KP, Gapor A, Sylvester PW (2000) Antiproliferative and apoptotic effects of tocopherols and tocotrienols on preneoplastic and neoplastic mouse mammary epithelial cells. Proc Soc Exp Biol Med 224:292–301

    Article  PubMed  CAS  Google Scholar 

  7. McIntyre BS, Briski KP, Tirmenstein MA, Fariss MW, Gapor A et al (2000) Antiproliferative and apoptotic effects of tocopherols and tocotrienols on normal mouse mammary epithelial cells. Lipids 35:171–180

    Article  PubMed  CAS  Google Scholar 

  8. Shah S, Gapor A, Sylvester PW (2003) Role of caspase-8 activation in mediating vitamin E-induced apoptosis in murine mammary cancer cells. Nutr Cancer 45:236–246. doi:10.1207/S15327914NC4502_14

    Article  PubMed  CAS  Google Scholar 

  9. Shah S, Sylvester PW (2004) Tocotrienol-induced caspase-8 activation is unrelated to death receptor apoptotic signaling in neoplastic mammary epithelial cells. Exp Biol Med (Maywood) 229:745–755

    CAS  Google Scholar 

  10. Shah SJ, Sylvester PW (2005) Tocotrienol-induced cytotoxicity is unrelated to mitochondrial stress apoptotic signaling in neoplastic mammary epithelial cells. Biochem Cell Biol 83:86–95. doi:10.1139/o04-127

    Article  PubMed  CAS  Google Scholar 

  11. Shah SJ, Sylvester PW (2005) Gamma-tocotrienol inhibits neoplastic mammary epithelial cell proliferation by decreasing Akt and nuclear factor kappaB activity. Exp Biol Med (Maywood) 230:235–241

    CAS  Google Scholar 

  12. Xu C, Bailly-Maitre B, Reed JC (2005) Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 115:2656–2664. doi:10.1172/JCI26373

    Article  PubMed  CAS  Google Scholar 

  13. Yoshida H (2007) ER stress and diseases. Febs J 274:630–658. doi:10.1111/j.1742-4658.2007.05639.x

    Article  PubMed  CAS  Google Scholar 

  14. Schroder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789. doi:10.1146/annurev.biochem.73.011303.074134

    Article  PubMed  CAS  Google Scholar 

  15. Schroder M, Kaufman RJ (2005) ER stress and the unfolded protein response. Mutat Res 569:29–63. doi:10.1016/j.mrfmmm.2004.06.056

    PubMed  Google Scholar 

  16. Mori K (2000) Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 101:451–454

    Article  PubMed  CAS  Google Scholar 

  17. Romero-Ramirez L, Cao H, Nelson D, Hammond E, Lee AH et al (2004) XBP1 is essential for survival under hypoxic conditions and is required for tumor growth. Cancer Res 64:5943–5947. doi:10.1158/0008-5472.CAN-04-1606

    Article  PubMed  CAS  Google Scholar 

  18. Dong D, Ni M, Li J, Xiong S, Ye W et al (2008) Critical role of the stress chaperone GRP78/BiP in tumor proliferation, survival, and tumor angiogenesis in transgene-induced mammary tumor development. Cancer Res 68:498–505. doi:10.1158/0008-5472.CAN-07-2950

    Article  PubMed  CAS  Google Scholar 

  19. Fels DR, Koumenis C (2006) The PERK/eIF2alpha/ATF4 module of the UPR in hypoxia resistance and tumor growth. Cancer Biol Ther 5:723–728

    Article  PubMed  CAS  Google Scholar 

  20. Szegezdi E, Logue SE, Gorman AM, Samali A (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7:880–885. doi:10.1038/sj.embor.7400779

    Article  PubMed  CAS  Google Scholar 

  21. Vattem KM, Wek RC (2004) Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci USA 101:11269–11274. doi:10.1073/pnas.0400541101

    Article  PubMed  CAS  Google Scholar 

  22. Harding HP, Novoa I, Zhang Y, Zeng H, Wek R et al (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6:1099–1108

    Article  PubMed  CAS  Google Scholar 

  23. Kim R, Emi M, Tanabe K, Murakami S (2006) Role of the unfolded protein response in cell death. Apoptosis 11:5–13. doi:10.1007/s10495-005-3088-0

    Article  PubMed  CAS  Google Scholar 

  24. Boyce M, Yuan J (2006) Cellular response to endoplasmic reticulum stress: a matter of life or death. Cell Death Differ 13:363–373. doi:10.1038/sj.cdd.4401817

    Article  PubMed  CAS  Google Scholar 

  25. Rao RV, Ellerby HM, Bredesen DE (2004) Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ 11:372–380. doi:10.1038/sj.cdd.4401378

    Article  PubMed  CAS  Google Scholar 

  26. Oyadomari S, Araki E, Mori M (2002) Endoplasmic reticulum stress-mediated apoptosis in pancreatic beta-cells. Apoptosis 7:335–345

    Article  PubMed  CAS  Google Scholar 

  27. Ohoka N, Yoshii S, Hattori T, Onozaki K, Hayashi H (2005) TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death. EMBO J 24:1243–1255. doi:10.1038/sj.emboj.7600596

    Article  PubMed  CAS  Google Scholar 

  28. Nakagawa T, Zhu H, Morishima N, Li E, Xu J et al (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403:98–103. doi:10.1038/47513

    Article  PubMed  CAS  Google Scholar 

  29. Anderson LW, Danielson KG, Hosick HL (1981) Metastatic potential of hyperplastic alveolar nodule derived mouse mammary tumor cells following intravenous inoculation. Eur J Cancer Clin Oncol 17:1001–1008

    Article  PubMed  CAS  Google Scholar 

  30. Danielson KG, Anderson LW, Hosick HL (1980) Selection and characterization in culture of mammary tumor cells with distinctive growth properties in vivo. Cancer Res 40:1812–1819

    PubMed  CAS  Google Scholar 

  31. Anderson LW, Danielson KG, Hosick HL (1979) New cell line. Epithelial cell line and subline established from premalignant mouse mammary tissue. In Vitro 15:841–843

    Article  PubMed  CAS  Google Scholar 

  32. Wali VB, Sylvester PW (2007) Synergistic antiproliferative effects of gamma-tocotrienol and statin treatment on mammary tumor cells. Lipids 42:1113–1123. doi:10.1007/s11745-007-3102-0

    Article  PubMed  CAS  Google Scholar 

  33. Wali VB, Bachawal SV, Sylvester PW (2009) Combined treatment of {gamma}-tocotrienol with statins induces mammary tumor cell cycle arrest in G1. Exp Biol Med (Maywood) 234:639–650. doi:10.3181/0810-RM-300

    Article  CAS  Google Scholar 

  34. Sylvester PW, Birkenfeld HP, Hosick HL, Briski KP (1994) Fatty acid modulation of epidermal growth factor-induced mouse mammary epithelial cell proliferation in vitro. Exp Cell Res 214:145–153. doi:10.1006/excr.1994.1243

    Article  PubMed  CAS  Google Scholar 

  35. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  PubMed  CAS  Google Scholar 

  36. Huang WC, Lin YS, Chen CL, Wang CY, Chiu WH et al (2009) Glycogen synthase kinase-3beta mediates endoplasmic reticulum stress-induced lysosomal apoptosis in leukemia. J Pharmacol Exp Ther 329:524–531. doi:10.1124/jpet.108.148122

    Article  PubMed  CAS  Google Scholar 

  37. Novoa I, Zeng H, Harding HP, Ron D (2001) Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J Cell Biol 153:1011–1022

    Article  PubMed  CAS  Google Scholar 

  38. van Huizen R, Martindale JL, Gorospe M, Holbrook NJ (2003) P58IPK, a novel endoplasmic reticulum stress-inducible protein and potential negative regulator of eIF2alpha signaling. J Biol Chem 278:15558–15564. doi:10.1074/jbc.M212074200

    Article  PubMed  Google Scholar 

  39. Yan W, Frank CL, Korth MJ, Sopher BL, Novoa I et al (2002) Control of PERK eIF2alpha kinase activity by the endoplasmic reticulum stress-induced molecular chaperone P58IPK. Proc Natl Acad Sci USA 99:15920–15925. doi:10.1073/pnas.252341799

    Article  PubMed  CAS  Google Scholar 

  40. Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397:271–274. doi:10.1038/16729

    Article  PubMed  CAS  Google Scholar 

  41. Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD et al (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11:619–633

    Article  PubMed  CAS  Google Scholar 

  42. Salazar M, Carracedo A, Salanueva IJ, Hernandez-Tiedra S, Lorente M et al (2009) Cannabinoid action induces autophagy mediated cell death through stimulation of ER stress in human glioma cells. J Clin Invest 119:1359–1372

    Article  PubMed  CAS  Google Scholar 

  43. Carracedo A, Gironella M, Lorente M, Garcia S, Guzman M et al (2006) Cannabinoids induce apoptosis of pancreatic tumor cells via endoplasmic reticulum stress-related genes. Cancer Res 66:6748–6755. doi:10.1158/0008-5472.CAN-06-0169

    Article  PubMed  CAS  Google Scholar 

  44. Xu Q, Ohara N, Liu J, Nakabayashi K, DeManno D et al (2007) Selective progesterone receptor modulator asoprisnil induces endoplasmic reticulum stress in cultured human uterine leiomyoma cells. Am J Physiol Endocrinol Metab 293:E1002–E1011. doi:10.1152/ajpendo.00210.2007

    Article  PubMed  CAS  Google Scholar 

  45. Corcoran CA, Luo X, He Q, Jiang C, Huang Y et al (2005) Genotoxic and endoplasmic reticulum stresses differentially regulate TRB3 expression. Cancer Biol Ther 4:1063–1067

    Article  PubMed  CAS  Google Scholar 

  46. Du K, Herzig S, Kulkarni RN, Montminy M (2003) TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver. Science 300:1574–1577. doi:10.1126/science.1079817

    Article  PubMed  CAS  Google Scholar 

  47. Nakanishi K, Sudo T, Morishima N (2005) Endoplasmic reticulum stress signaling transmitted by ATF6 mediates apoptosis during muscle development. J Cell Biol 169:555–560. doi:10.1083/jcb.200412024

    Article  PubMed  CAS  Google Scholar 

  48. Parker RA, Pearce BC, Clark RW, Gordon DA, Wright JJ (1993) Tocotrienols regulate cholesterol production in mammalian cells by post-transcriptional suppression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J Biol Chem 268:11230–11238

    PubMed  CAS  Google Scholar 

  49. Elson CE, Peffley DM, Hentosh P, Mo H (1999) Isoprenoid-mediated inhibition of mevalonate synthesis: potential application to cancer. Proc Soc Exp Biol Med 221:294–311

    Article  PubMed  CAS  Google Scholar 

  50. Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343:425–430. doi:10.1038/343425a0

    Article  PubMed  CAS  Google Scholar 

  51. Swanson KM, Hohl RJ (2006) Anti-cancer therapy: targeting the mevalonate pathway. Curr Cancer Drug Targets 6:15–37

    Article  PubMed  CAS  Google Scholar 

  52. Li J, Lee AS (2006) Stress induction of GRP78/BiP and its role in cancer. Curr Mol Med 6:45–54

    Article  PubMed  CAS  Google Scholar 

  53. Lee AS (2007) GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Res 67:3496–3499. doi:10.1158/0008-5472.CAN-07-0325

    Article  PubMed  CAS  Google Scholar 

  54. Tsutsumi S, Namba T, Tanaka KI, Arai Y, Ishihara T et al (2006) Celecoxib upregulates endoplasmic reticulum chaperones that inhibit celecoxib-induced apoptosis in human gastric cells. Oncogene 25:1018–1029. doi:10.1038/sj.onc.1209139

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed at the College of Pharmacy, University of Louisiana at Monroe, Monroe, LA and supported in part by grants from the National Institutes of Health (Grant CA 86833) and First Tech International Ltd.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul W. Sylvester.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wali, V.B., Bachawal, S.V. & Sylvester, P.W. Endoplasmic reticulum stress mediates γ-tocotrienol-induced apoptosis in mammary tumor cells. Apoptosis 14, 1366–1377 (2009). https://doi.org/10.1007/s10495-009-0406-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-009-0406-y

Keywords

Navigation