Skip to main content

Advertisement

Log in

Cell death induced by N-methyl-N-nitrosourea, a model SN1 methylating agent, in two lung cancer cell lines of human origin

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

New therapeutic approaches are needed for lung cancer, the leading cause of cancer death. Methylating agents constitute a widely used class of anticancer drugs, the effect of which on human non small cell lung cancer (NSCLC) has not been adequately studied. N-methyl-N-nitrosourea (MNU), a model SN1 methylating agent, induced cell death through a distinct mechanism in two human NSCLC cell lines studied, A549(p53wt) and H157(p53null). In A549(p53wt), MNU induced G2/M arrest, accompanied by cdc25A degradation, hnRNP B1 induction, hnRNP C1/C2 downregulation. Non-apoptotic cell death was confirmed by the lack of increase in the sub-G1 DNA content, Poly (ADP-ribose) polymerase cleavage and caspase-3, -7 activation. In H157(p53null), MNU induced apoptotic cell death, confirmed by cytofluorometry of DNA content and immunodetection of apoptotic markers, accompanied by overexpression of hnRNP B1 and C1/C2. Thus, the mechanism of the cell death induced by SN1 methylating agents is cell type-dependent and must be assessed prior treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Walker S (2008) Updates in non-small cell lung cancer. Clin J Oncol Nurs 12(4):587–596

    Article  PubMed  Google Scholar 

  2. Denlinger CE, Rundall BK, Keller BS, Jones DR (2004) Proteasome inhibition sensitizes non-small-cell lung cancer to Gemcitabine-induced apoptosis. Ann Thorac Surg 78:1207–1214

    Article  PubMed  Google Scholar 

  3. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  PubMed  CAS  Google Scholar 

  4. Ricci MS, Zong WX (2006) Chemotherapeutic approaches for targeting cell death pathways. Oncologist 11:342–357

    Article  PubMed  CAS  Google Scholar 

  5. Lilenbaum RC (2008) New horizons in chemotherapy: platforms for combinations in first-line advanced non-small cell lung cancer. J Thorac Oncol 3(6):171–174

    Google Scholar 

  6. Sculier JP et al (2007) Chemotherapy improves low performance status lung cancer patients. Eur Respir J 30(6):1186–1192

    Article  PubMed  CAS  Google Scholar 

  7. Robins HI, Traynor AM, Mehta M (2006) Temozolomide as prophylaxis for brain metastasis in non-small cell lung cancer. J Thorac Oncol 1(3):245–251

    Google Scholar 

  8. Choong NW, Mauer AM et al (2006) Phase II trial of temozolomide and irinotecan as second-line treatment for advanced non-small cell lung cancer. J Thorac Oncol 1(7):732–733

    Article  Google Scholar 

  9. Cortot AB, Geriniere L, Groupe Francais de Pneumo-Cancerologie et al (2006) Phase II trial of temozolomide and cisplatin followed by whole brain radiotherapy in non-small-cell lung cancer patients with brain metastases: a GLOT-GFPC study. Ann Oncol 17(9):1412–1417

    Article  PubMed  CAS  Google Scholar 

  10. Addeo R, De Rosa C et al (2008) Phase II trial of temozolomide using protracted low dose and whole-brain radiotherapy for non-small-cell-lung cancer and breast cancer patients with brain metastases. Cancer 113(9):2524–2531

    Article  PubMed  CAS  Google Scholar 

  11. Mirzoeva OK, Kawaguchi T, Pieper RO (2006) The Mre11/Rad50/Nbs1 complex interacts with the mismatch repair system and contributes to temozolomide-induced G2 arrest and cytotoxicity. Μol Cancer Ther 5(11):2757–2766

    Article  CAS  Google Scholar 

  12. Pegg AE (2000) Repair of O(6)-alkylguanine by alkyltransferases. Mutat Res 462(2–3):83–100

    PubMed  CAS  Google Scholar 

  13. Roos WP, Batista LF, Naumann SC, Wick W, Weller M, Menck CF, Kaina B (2007) Apoptosis in malignant glioma cells triggered by the temozolomide-induced DNA lesion O6-methylguanine. Oncogene 26(2):186–197

    Article  PubMed  CAS  Google Scholar 

  14. Kaina B (2003) DNA damage-triggered apoptosis: critical role of DNA repair, double-strand breaks, cell proliferation and signaling. Biochem Pharmacol 66(8):1547–1554

    Article  PubMed  CAS  Google Scholar 

  15. Ding J, Miao ZH, Meng LH, Geng MY (2006) Emerging cancer therapeutic opportunities target DNA-repair systems. Trends Pharmacol Sci 27(6):338–344

    Article  PubMed  CAS  Google Scholar 

  16. Ashwell S, Zabludoff S (2008) DNA damage detection and repair pathways-recent advances with inhibitors of checkpoint kinases in cancer therapy. Clin Cancer Res 14(13):4032–4037

    Article  PubMed  CAS  Google Scholar 

  17. Choi YD, Dreyfuss G (1984) Isolation of the heterogeneous nuclear RNA—ribonucleoprotein complex (hnRNP): a unique supramolecular assembly. Proc Natl Acad Sci USA 81:7471–7475

    Article  PubMed  CAS  Google Scholar 

  18. Pinol-Roma S, Choi YD, Matunis MJ, Dreyfuss G (1988) Immunopurification of heterogeneous nuclear ribonucleoprotein particles reveals an assortment of RNA-binding proteins. Genes Dev 2:215–227

    Article  PubMed  CAS  Google Scholar 

  19. Carpenter Β, MacKay C, Alnabulsi A, MacKay M, Telfer C, Melvin WT, Murray GI (2006) The roles of heterogenous nuclear ribonucleoproteins in tumour development and progression. Biochim Biophys Acta 1765:85–100

    PubMed  CAS  Google Scholar 

  20. Aman P, Ron D, Mandahl N, Fioretos T, Heim S, Arheden K, Willen H, Rydholm A, Mitelman F (1992) Rearrangement of the transcription factor gene CHOP in myxoid liposarcomas with t(12; 16) (q13; p11). Genes Chromosomes Cancer 5(4):278–285

    Article  PubMed  CAS  Google Scholar 

  21. Pio R, Zudaire I, Pino I, Castano Z, Zabalegui N, Vicent S, Garcia-Amigot F, Odero MD, Lozano MD, Garcia-Foncillas J, Calasanz MJ, Montuenga LM (2004) Alpha CP-4, encoded by a putative tumor suppressor gene at 3p21, but not its alternative splice variant alpha CP-4a, is underexpressed in lung cancer. Cancer Res 64:4171–4179

    Article  PubMed  CAS  Google Scholar 

  22. Shin KH, Kang MK, Kim RH, Christensen R, Park NH (2006) Heterogeneous nuclear ribonucleoprotein G shows tumor suppressive effect against oral squamous cell carcinoma cells. Clin Cancer Res 12(10):3222–3228

    Article  PubMed  CAS  Google Scholar 

  23. Holcik M, Gordon BW, Korneluk RG (2003) The internal ribosome entry site-mediated translation of antiapoptotic protein XIAP is modulated by the heterogeneous nuclear ribonucleoproteins C1 and C2. Mol Cell Biol 23:280–288

    Article  PubMed  CAS  Google Scholar 

  24. Spahn A, Blondeau N, Heurteaux C, Dehghani F, Rami A (2008) Concomitant transitory up-regulation of X-linked inhibitor of apoptosis protein (XIAP) and the heterogeneous nuclear ribonucleoprotein C1–C2 in surviving cells during neuronal apoptosis. Neurochem Res 33(9):1859–1868

    Article  PubMed  CAS  Google Scholar 

  25. Garneau D, Revil T, Fisette JF, Chabot B (2005) Heterogeneous nuclear ribonucleoprotein F/H proteins modulate the alternative splicing of the apoptotic mediator Bcl-x. J Biol Chem 280:22641–22650

    Article  PubMed  CAS  Google Scholar 

  26. de Hoog CL, Foster LJ, Mann M (2004) RNA and RNA binding proteins participate in early stages of cell spreading through spreading initiation centers. Cell 117(5):649–662

    Article  PubMed  Google Scholar 

  27. Bonnal S, Pileur F, Orsini C, Parker F, Pujol F, Prats AC, Vagner S (2005) Heterogeneous nuclear ribonucleoprotein A1 is a novel internal ribosome entry site trans-acting factor that modulates alternative initiation of translation of the fibroblast growth factor 2 mRNA. J Biol Chem 280:4144–4153

    Article  PubMed  CAS  Google Scholar 

  28. Shih SC, Claffey KP (1999) Regulation of human vascular endothelial growth factor mRNA stability in hypoxia by heterogeneous nuclear ribonucleoprotein L. J Biol Chem 274:1359–1365

    Article  PubMed  CAS  Google Scholar 

  29. Zhou J, Mulshine JL, Unsworth EJ, Scott FM, Avis IM, Vos MD, Treston AM (1996) Purification and characterization of a protein that permits early detection of lung cancer. Identification of heterogeneous nuclear ribonucleoprotein-A2/B1 as the antigen for monoclonal antibody 703D4. J Biol Chem 271(18):10760–10766

    Article  PubMed  CAS  Google Scholar 

  30. Debiak M, Nikolova T, Kaina B (2004) Loss of ATM sensitizes against O6-methylguanine triggered apoptosis, SCEs and chromosomal aberrations. DNA Repair (Amst) 3(4):359–368

    Article  CAS  Google Scholar 

  31. Pletsas D, Wheelhouse RT, Pletsa V, Nicolaou A, Jenkins TC, Bibby MC, Kyrtopoulos SA (2006) Polar, functionalized guanine-O6 derivatives resistant to repair by O6-alkylguanine-DNA alkyltransferase: implications for the design of DNA-modifying drugs. Eur J Med Chem 41(3):330–339

    Article  PubMed  CAS  Google Scholar 

  32. Stojic L, Mojas N, Cejka P, Di Pietro M, Ferrari S, Marra G, Jiricny J (2004) Mismatch repair-dependent G2 checkpoint induced by low doses of SN1 type methylating agents requires the ATR kinase. Genes Dev 18(11):1331–1344

    Article  PubMed  CAS  Google Scholar 

  33. Stojic L, Cejka P, Jiricny J (2005) High doses of SN1 type methylating agents activate DNA damage signaling cascades that are largely independent of mismatch repair. Cell Cycle 4(3):473–477

    PubMed  CAS  Google Scholar 

  34. Liu L, Gerson StantonL (2006) Targeted modulation of MGMT: clinical implications. Clin Cancer Res 12(2):328–331

    Article  PubMed  CAS  Google Scholar 

  35. Klapacz J, Meira LB, Luchetti DG, Calvo JA, Bronson RT, Edelmann W, Samson LD (2009) O6-methylguanine-induced cell death involves exonuclease 1 as well as DNA mismatch recognition in vivo. Proc Natl Acad Sci USA 106(2):576–581

    Article  PubMed  CAS  Google Scholar 

  36. Tamaskar I, Mekhail T, Dreicer R, Olencki T, Roman S, Elson P, Bukowski RM (2008) Phase I trial of weekly docetaxel and daily temozolomide in patients with metastatic disease. Invest New Drugs 26(6):553–559

    Article  PubMed  CAS  Google Scholar 

  37. Kouroussis C, Vamvakas L, Vardakis N, Kotsakis A, Kalykaki A, Kalbakis K, Saridaki Z, Kentepozidis N, Giassas S, Georgoulias V (2009) Continuous administration of daily low-dose temozolomide in pretreated patients with advanced non-small cell lung cancer: a phase II study. Oncology 76(2):112–117

    Article  PubMed  CAS  Google Scholar 

  38. Adonizio CS, Babb JS, Maiale C, Huang C, Donahue J, Millenson MM, Hosford M, Somer R, Treat J, Sherman E, Langer CJ (2002) Temozolomide in non-small-cell lung cancer: preliminary results of a phase II trial in previously treated patients. Clin Lung Cancer 3:254–258

    Article  PubMed  CAS  Google Scholar 

  39. Wedge SR, Schepens B, Tinton SA, Bruynooghe Y, Parthoens E, Haegman M, Beyaertand R, Cornelis S, Newlands ES (1996) O6-benzylguanine enhances the sensitivity of a glioma xenograft with low O6-alkylguanine-DNA alkyltransferase activity to temozolomide and BCNU. Br J Cancer 73(9):1049–1052

    PubMed  CAS  Google Scholar 

  40. Tolcher AW, Gerson SL, Denis L, Geyer C, Hammond LA, Patnaik A, Goetz AD, Schwartz G, Edwards T, Reyderman L, Statkevich P, Cutler DL, Rowinsky EK (2003) Marked inactivation of O6-alkylguanine-DNA alkyltransferase activity with protracted temozolomide schedules. Br J Cancer 88(7):1004–1011

    Article  PubMed  CAS  Google Scholar 

  41. Beranek DT (1990) Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents. Mutat Res 231(1):11–30

    PubMed  CAS  Google Scholar 

  42. Sancar Α, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85

    Article  PubMed  CAS  Google Scholar 

  43. Aquilina G, Crescenzi M, Bignami M (1999) Mismatch repair G(2)/M cell cycle arrest and lethality after DNA damage. Carcinogenesis 20(12):2317–2326

    Article  PubMed  CAS  Google Scholar 

  44. Adamson AW, Beardsley DI, Kim WJ, Gao Y, Baskaran R, Brown KD (2005) Methylator-induced, mismatch repair-dependent G2 arrest is activated through Chk1 and Chk2. Mol Biol Cell 16(3):1513–1526

    Article  PubMed  CAS  Google Scholar 

  45. Xiao Z, Chen Z, Gunasekera AH, Sowin TJ, Rosenberg SH, Fesik S, Zhang H (2003) Chk1 mediates S and G2 arrests through Cdc25A degradation in response to DNA-damaging agents. J Biol Chem 278(24):21767–21773

    Article  PubMed  CAS  Google Scholar 

  46. Roninson IB, Broude EV, Chang BD (2001) If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophein tumor cells. Drug Resist Updat 4(5):303–313

    Article  PubMed  CAS  Google Scholar 

  47. De Bruin EC, Medema JP (2008) Apoptosis and non-apoptotic deaths in cancer development and treatment response. Cancer Treat Rev 34(8):737–749

    Article  PubMed  Google Scholar 

  48. Mansilla S, Bataller M, Portugal J (2006) Mitotic catastrophe as a consequence of chemotherapy. Anticancer Agents Med Chem 6(6):589–602

    Article  PubMed  CAS  Google Scholar 

  49. Vakifahmetoglu H, Olsson M, Zhivotovsky B (2008) Death through a tragedy: mitotic catastrophe. Cell Death Differ 15(7):1153–1162

    Article  PubMed  CAS  Google Scholar 

  50. Cohen-Jonathan E, Bernhard EJ, McKenna WG (1999) How does radiation kill cells? Curr Opin Chem Biol 3:77–83

    Article  CAS  Google Scholar 

  51. Blagosklonny MV (2007) Mitotic arrest and cell fate. Cell Cycle 6(1):70–74

    PubMed  CAS  Google Scholar 

  52. Chang BD et al (2000) p21WafI/CipI/SdiI-induced growth arrest is associated with depletion of mitosis-control proteins and leads to abnormal mitosis and endoreduplication in recovering cells. Oncogene 19:2165–2170

    Article  PubMed  CAS  Google Scholar 

  53. Zong WX, Ditsworth D, Bauer DE, Wang ZQ, Thompson CB (2006) Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev 18:1272–1282

    Article  Google Scholar 

  54. Iwanaga K, Sueoka N, Sato A, Hayashi S, Sueoka E (2005) Heterogeneous nuclear ribonucleoprotein B1 protein impairs DNA repair mediated through the inhibition of DNA-dependent protein kinase activity. Biochem Biophys Res Commun 333:888–895

    Article  PubMed  CAS  Google Scholar 

  55. Lee SY, Park JH, Kim S, Park EJ, Yun Y, Kwon J (2005) A proteomics approach for the identification of nucleophosmin and heterogeneous nuclear ribonucleoprotein C1/C2 as chromatin-binding proteins in response to DNA double-strand breaks. Biochem J 388(1):7–15

    Article  PubMed  CAS  Google Scholar 

  56. Zhang S, Schlott B, Görlach M, Grosse F (2004) DNA-dependent protein kinase (DNA-PK) phosphorylates nuclear DNA helicase II/RNA helicase A and hnRNP proteins in an RNA-dependent manner. Nucleic Acids Res 32(1):1–10

    Article  PubMed  Google Scholar 

  57. Suryakant KN, Catalin ED, Chinavenmeni SV, Nathan IB, Kalkunte SS (2005) Proteomic analysis of human Ο6-methylguanine-DNA methylatransferase by affinity chromatography and tandem mass spectrometry. Biochem Biophys Res Commun 337:1176–1184

    Article  Google Scholar 

  58. Patry C, Bouchard L, Labrecque P, Gendron D, Lemieux B, Toutant J, Lapointe E, Wellinger R, Chabot B (2003) Small interfering RNA-mediated reduction in heterogeneous nuclear ribonucleoparticule A1/A2 proteins induces apoptosis in human cancer cells but not in normal mortal cell lines. Cancer Res 63(22):7679–7688

    PubMed  CAS  Google Scholar 

  59. Williamson DJ, Banik-Maiti S, DeGregori J, Ruley HE (2000) hnRNP C is required for postimplantation mouse development but is dispensable for cell viability. Mol Cell Biol 20:4094–4105

    Article  PubMed  CAS  Google Scholar 

  60. Hossain MN, Fuji M, Miki K, Endoh M, Ayusawa D (2007) Downregulation of hnRNP C1/C2 by siRNA sensitizes HeLa cells to various stresses. Mol Cell Biochem 296(1–2):151–157

    Article  PubMed  CAS  Google Scholar 

  61. Schepens B, Tinton SA, Bruynooghe Y, Parthoens E, Haegman M, Beyaert R, Cornelis S (2007) A role for hnRNP C1/C2 and Unr in internal initiation of translation during mitosis. EMBO J 26(1):158–169

    Article  PubMed  CAS  Google Scholar 

  62. Brockstedt E, Rickers A, Kostka S, Laubersheimer A, Dörken B, Wittmann-Liebold B, Bommert K, Otto A (1998) Identification of apoptosis-associated proteins in a human Burkitt lymphoma cell line. Cleavage of heterogeneous nuclear ribonucleoprotein A1 by caspase 3. J Biol Chem 273(43):28057–28064. Erratum in: J Biol Chem 1998 273(50):33884

    Google Scholar 

Download references

Acknowledgments

We thank Mrs. Irene Kolonti for excellent technical assistance. We also thank Dr. H. Pratsinis (Institute of Biology, Demokritos, Agia Paraskevi, Greece) for useful guidance and discussions throughout the cell cycle analysis experiments and Dr. D. Stellas for his help with the confocal experiments. This work was supported by the research project (PENED), co-financed by EU-European Social Fund (75%) and the Greek Ministry of Development-GSRT (25%).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassiliki Pletsa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koryllou, A., Patrinou-Georgoula, M., Troungos, C. et al. Cell death induced by N-methyl-N-nitrosourea, a model SN1 methylating agent, in two lung cancer cell lines of human origin. Apoptosis 14, 1121–1133 (2009). https://doi.org/10.1007/s10495-009-0379-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-009-0379-x

Keywords

Navigation