Skip to main content
Log in

Local hyperthermia induces apoptosis of keratinocytes in both normal skin and condyloma acuminata via different pathways

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Local hyperthermia has been successfully used in the treatment of viral warts. However, the mechanism of action of hyperthermia has largely remained unclear. In this study we evaluated the effect of local hyperthermia on the induction of apoptosis in human keratinocytes, and expression of apoptosis-related genes in both condyloma acuminata (CA) and normal skin. The study showed that higher hyperthermia increased the number of apoptotic keratinocytes in CA and normal skin. The temperature-dependent increased expression of Fas and Bax were observed in both CA and normal skin. In contrast, the expression of Bcl-2 in CA was decreased at both transcriptional and translational levels. Furthermore, the transcriptional expression of DR4 and DR5 were increased in a temperature-dependent manner in CA, but not in normal skin. These results suggest that different mechanisms of action might be involved in hyperthermia induced apoptosis in CA and normal skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CA:

Condyloma acuminata

HPV:

Human papillomavirus

TNF:

Tumor necrosis factor

OPG:

Osteoprotegerin

DD:

Death domains

DR:

Death receptor

PBS:

Phosphate buffered solution

TRAIL:

Tumor necrosis factor-related apoptosis-inducing ligand

TUNEL:

Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling

IHC:

Immunohistochemistry

References

  1. Koutsky L (1997) Epidemiology of genital human papillomavirus infection. Am J Med 102:3–8. doi:10.1016/S0002-9343(97)00177-0

    Article  CAS  PubMed  Google Scholar 

  2. Maw RD, Reitano M, Roy M (1998) An international survey of patients with genital warts: perceptions regarding treatment and impact on lifestyle. Int J STD AIDS 9:571–578. doi:10.1258/0956462981921143

    Article  CAS  PubMed  Google Scholar 

  3. Kodner CM, Nasraty S (2004) Management of genital warts. Am Fam Physician 70:2335–2342

    PubMed  Google Scholar 

  4. Wust P, Hildebrandt B (2002) Hyperthermia in combined treatment of cancer. Lancet Oncol 3:487–497. doi:10.1016/S1470-2045(02)00818-5

    Article  CAS  PubMed  Google Scholar 

  5. Harmon BV, Corder AM, Collins RJ et al (1990) Cell death induced in a murine mastocytoma by 42–47°C heating in vitro: evidence that the form of death changes from apoptosis to necrosis above a critical heat load. Int J Radiat Biol 58:845–858. doi:10.1080/09553009014552221

    Article  CAS  PubMed  Google Scholar 

  6. Sakaguchi Y, Stephens LC, Makino M et al (1995) Apoptosis in tumors and normal tissues induced by whole body hyperthermia in rats. Cancer Res 55:5459–5464

    CAS  PubMed  Google Scholar 

  7. Stern P, Levine N (1992) Controlled localized heat therapy in cutaneous warts. Arch Dermatol 128(7):945–948. doi:10.1001/archderm.128.7.945

    Article  CAS  PubMed  Google Scholar 

  8. Pfau A, Abd-el-Raheem TA, Baumler W et al (1994) Nd:YAG laser hyperthermia in the treatment of recalcitrant verrucae vulgares (Regensburg’s technique). Acta Derm Venereol 74(3):212–214

    CAS  PubMed  Google Scholar 

  9. El-Tonsy MH, Anbar TE, El-Domyati M et al (1999) Density of viral particles in pre and post Nd: YAG laser hyperthermia therapy and cryotherapy in plantar warts. Int J Dermatol 38(5):393–398. doi:10.1046/j.1365-4362.1999.00719.x

    Article  CAS  PubMed  Google Scholar 

  10. Werness BA, Levine AJ, Howley PM (1990) Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248:76–79. doi:10.1126/science.2157286

    Article  CAS  PubMed  Google Scholar 

  11. Garnett T, Filippova M, Duerksen-Hughes PJ (2006) Accelerated degradation of FADD and procaspase 8 in cells expressing human papilloma virus 16 E6 impairs TRAIL-mediated apoptosis. Cell Death Differ 13(11):1915–1926. doi:10.1038/sj.cdd.4401886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Filippova M, Parkhurst L, Duerksen-Hughes PJ (2004) The human papillomavirus 16 E6 protein binds to Fas associated death domain and protects from Fas-triggered apoptosis. J Biol Chem 279:25729–25744. doi:10.1074/jbc.M401172200

    Article  CAS  PubMed  Google Scholar 

  13. Kabsch K, Mossadegh N, Kohl A et al (2004) The HPV-16 E5 protein inhibits TRAIL- and FasL-mediated apoptosis in human keratinocyte raft cultures. Intervirology 47:48–56. doi:10.1159/000076642

    Article  CAS  PubMed  Google Scholar 

  14. Kabsch K, Alonso A (2002) The human papillomavirus type 16 E5 protein impairs TRAIL- and FasL mediated apoptosis in HaCaT cells by different mechanisms. J Virol 76:12162–12172. doi:10.1128/JVI.76.23.12162-12172.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sima N, Wang W, Kong D et al (2008) RNA interference against HPV16 E7 oncogene leads to viral E6 and E7 suppression in cervical cancer cells and apoptosis via upregulation of Rb and p53. Apoptosis 13(2):273–281. doi:10.1007/s10495-007-0163-8

    Article  CAS  PubMed  Google Scholar 

  16. Singh M, Singh N (2008) Induction of apoptosis by hydrogen peroxide in HPV 16 positive human cervical cancer cells: involvement of mitochondrial pathway. Mol Cell Biochem 310(1–2):57–65. doi:10.1007/s11010-007-9665-5

    Article  CAS  PubMed  Google Scholar 

  17. Tjalma WA, Weyler JJ, Bogers JJ et al (2001) The importance of biological factors (bcl-2, bax, p53, PCNA, MI, HPV and angiogenesis) in invasive cervical cancer. Eur J Obstet Gynecol Reprod Biol 97:223–230. doi:10.1016/S0301-2115(00)00541-8

    Article  CAS  PubMed  Google Scholar 

  18. Wiley SR, Schooley K, Smolak PJ et al (1995) Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3:673–682. doi:10.1016/1074-7613(95)90057-8

    Article  CAS  PubMed  Google Scholar 

  19. Pan G, Rourke KO, Chinnaiyan AM et al (1997) The receptor for the cytotoxic ligand TRAIL. Science 276:111–113. doi:10.1126/science.276.5309.111

    Article  CAS  PubMed  Google Scholar 

  20. Ostberg JR, Kabingu E, Repasky EA (2003) Thermal regulation of dendritic cell activation and migration from skin explants. Int J Hyperthermia 19:520–533. doi:10.1080/02656730310001607986

    Article  CAS  PubMed  Google Scholar 

  21. Van den Brule AJ, Meijer CJ, Bakels V et al (1990) Rapid detection of human papillomavirus in cervical scrapes by combined general primer-mediated and type-specific polymerase chain reaction. J Clin Microbiol 28(12):2739–2743

    PubMed  PubMed Central  Google Scholar 

  22. Ni X, Hazarika P, Zhang C et al (2001) Fas ligand expression by neoplastic T lymphocytes mediates elimination of CD8 + cytotoxic T lymphocytes in mycosis fungoides: a potential mechanism of tumor immune escape? Clin Cancer Res 7(9):2682–2692

    CAS  PubMed  Google Scholar 

  23. Hildebrandt B, Hegewisch-Becker S, Kerner T et al (2005) Current status of radiant whole-body hyperthermia at temperatures >41.5 degrees C and practical guidelines for the treatment of adults. The German interdisciplinary working group on hyperthermia. Int J Hyperthermia 21(2):169–183. doi:10.1080/02656730400003401

    Article  CAS  PubMed  Google Scholar 

  24. Hildebrandt B, Wust P, Ahlers O et al (2002) The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol 43:33–56. doi:10.1016/S1040-8428(01)00179-2

    Article  PubMed  Google Scholar 

  25. Blaha M, Kohl J, Dubose D et al (2001) Ultrastructural and histological effects of exposure to CEES or heat in a human epidermal model. In Vitro Mol Toxicol 14:15–23. doi:10.1089/109793301316882513

    Article  CAS  Google Scholar 

  26. Matylevitch NP, Schuschereba ST, Mata JR et al (1998) Apoptosis and accidental cell death in culture human keratinocytes after thermal injury. Am J Pathol 153:567–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schieke SM, Schroeder P, Krutmann J (2003) Cutaneous effects of infrared radiation: from clinical observations to molecular response mechanisms. Photodermatol Photoimmunol Photomed 19:228–234. doi:10.1034/j.1600-0781.2003.00054.x

    Article  CAS  PubMed  Google Scholar 

  28. Tamada Y, Takama H, Kitamura T et al (1994) Identification of programmed cell death in normal human skin tissues by using specific labeling of fragmented DNA. Br J Dermatol 131:521–524

    Article  CAS  PubMed  Google Scholar 

  29. Boehm I (2006) Apoptosis in physiological and pathological skin: implications for therapy. Curr Mol Med 6:375–394. doi:10.2174/156652406777435390

    Article  CAS  PubMed  Google Scholar 

  30. Kulms D, Zeise E, Poppelmann B et al (2002) DNA damage, death receptor activation and reactive oxygen species contribute to ultraviolet radiation-induced apoptosis in an essential and independent way. Oncogen 21:5844–5851. doi:10.1038/sj.onc.1205743

    Article  CAS  Google Scholar 

  31. Leverkus M, Yaar M, Gilchrist BA (1997) Fas/Fas ligand interaction contribute to UV-induced apoptosis in human keratinocytes. Exp Cell Res 232:255–262. doi:10.1006/excr.1997.3514

    Article  CAS  PubMed  Google Scholar 

  32. Salah-Eldin AE, Inoue S, Tsukamoto S et al (2003) An association of Bcl-2 phosphorylation and Bax localization with their functions after hyperthermia and paclitaxel treatment. Int J Cancer 103:53–60. doi:10.1002/ijc.10782

    Article  CAS  PubMed  Google Scholar 

  33. Moody CA, Fradet-Turcotte A, Archambault J et al (2007) Human papillomaviruses activate caspases upon epithelial differentiation to induce viral genome amplification. Proc Natl Acad Sci USA 104:19541–19546. doi:10.1073/pnas.0707947104

    Article  CAS  PubMed  Google Scholar 

  34. Tollefson AE, Hermiston TW, Lichtenstein DL et al (1998) Forced degradation of Fas inhibits apoptosis in adenovirus-infected cells. Nature 392:726–730. doi:10.1038/33712

    Article  CAS  PubMed  Google Scholar 

  35. Albert ML, Sauter B, Bhardwaj N (1998) Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392:86–89. doi:10.1038/32183

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by National Science Foundation (30740082), Program for New Century Excellent Talents in University (NCEP-04-0287) and Program for Changjiang Scholars and Innovative Research Team in University (IRT0760), Ministry of Education.

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-Hua Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Gao, XH., Li, X. et al. Local hyperthermia induces apoptosis of keratinocytes in both normal skin and condyloma acuminata via different pathways. Apoptosis 14, 721–728 (2009). https://doi.org/10.1007/s10495-009-0344-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-009-0344-8

Keywords

Navigation