Skip to main content

Advertisement

Log in

Inflammasomes in infection and inflammation

  • Cell Death and Disease
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Two of the main challenges that multicellular organisms faced during evolution were to cope with invading microorganisms and eliminate and replace dying cells. Our innate immune system evolved to handle both tasks. Key aspects of innate immunity are the detection of invaders or tissue injury and the activation of inflammation that alarms the system through the action of cytokine and chemokine cascades. While inflammation is essential for host resistance to infections, it is detrimental when produced chronically or in excess and is linked to various diseases, most notably auto-immune diseases, auto-inflammatory disorders, cancer and septic shock. Essential regulators of inflammation are enzymes termed “the inflammatory caspases”. They are activated by cellular sensors of danger signals, the inflammasomes, and subsequently convert pro-inflammatory cytokines into their mature active forms. In addition, they regulate non-conventional protein secretion of alarmins and cytokines, glycolysis and lipid biogenesis, and the execution of an inflammatory form of cell death termed “pyroptosis”. By acting as key regulators of inflammation, energy metabolism and cell death, inflammatory caspases and inflammasomes exert profound influences on innate immunity and infectious and non-infectious inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ICE:

Interleukin-1β Converting Enzyme

IL-1:

Interleukin-1

Asp:

Aspartic acid

Ala:

Alanine

Cys:

Cysteine

His:

Histidine

Gly:

Glycine

Ser:

Serine

Arg:

Arginine

Glu:

Glutamic acid

IGIF:

Interferon-γ-inducing factor

ST2:

Interleukin 1 receptor-like 1

TH1:

Type 1 helper T cells

TH2:

Type 2 helper T cells

TIM:

Triose-phosphate isomerase

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

SREBP:

Sterol regulatory element binding protein

iTRAQ:

Isobaric tag for relative and absolute quantitation

FGF2:

Fibroblast growth factor 2

Bid:

BH3-interacting domain death agonist

AIP-1/WDR-1:

Atrophin-interacting-protein 1/WD repeat domain 1

LD:

Lethal dose

SIRS:

Systemic inflammatory response syndrome

LPS:

Lipopolysaccaride

TNFα:

Tumor necrosis factor α

SAP:

Severe acute pancreatitis

DSS:

Dextran sodium sulfate

ARF:

Acute renal failure

CTCL:

Cutaneous T-cell lymphoma

VCAM-1:

Vascular cell adhesion molecule-1

MS:

Multiple sclerosis

EAE:

Autoimmune encephalomyelitis

TLR:

Toll-like receptor

NLR:

Nod-like receptor

PAMP:

Pathogen-associated molecular pattern

Nod:

Nucleotide binding and oligomerization domain

NALP:

NACHT domain- leucine-rich repeat-, and PYD-containing protein

ASC:

Apoptosis-associated speck-like protein containing a CARD

Cardinal:

CARD inhibitor of NF-kB-activating ligands

LRR:

Leucine-rich repeat

CARD:

Caspase recruitment domain

IPAF:

ICE protease-activating factor

BIR:

Baculovirus IAP Repeat

NAIP:

Neuronal apoptosis inhibitory protein

PYD:

Pyrin domain

NBS:

Nucleotide binding site

DF:

Death-fold

CIITA:

Class II trans-activator

LCV:

Legionella containing vacuole

Icm/Dot:

Intracellular multiplication/defective organelle trafficking

Lgn :

Legionella

IFN:

Interferon

SipB:

Salmonella invasion protein B

TTSS:

Type III secretion system

IpaB:

Invasin B

DAMP:

Danger-associated molecular pattern

ATP:

Adenosine triphosphate

iPLA2:

Ca2+-independent phospholipase A2

MSU:

Monosodium urate

CPPD:

Calcium pyrophosphate dihydrate

ROS:

Reactive oxygen species

NADPH:

Nicotinamide adenine dinucleotide phosphate-oxidase

P22phox:

Protein 22 phagocyte and oxidase

OVA:

Ovalbumin

MDP:

Muramyl dipeptide

HSP90:

Heat shock protein 90

NF-κB:

Nuclear factor-kappa B

COP:

CARD-only protein

INCA:

Inhibitory CARD

RIP2:

Receptor-interacting protein 2

FMF:

Familial Mediterranean fever

vPYD:

Viral PYD

Bcl-2:

B-cell lymphoma 2

Bcl-XL :

Basal cell lymphoma-extra large

IKKβ:

I kappa B kinase β

LOF:

Loss of function

GOF:

Gain of function

BLS-II:

Type II bare lymphocyte syndrome

SCID:

Severe combined immunodeficiency

MHC-II:

Major histocompatibility complex class II

FCU:

Familial cold urticaria

MWS:

Muckle–Wells syndrome

NOMID:

Neonatal-onset mutli-system inflammatory disease

CIAS1:

Cold-induced auto-inflammatory syndrome 1

CD:

Crohn’s disease

References

  1. Mosley B, Dower SK, Gillis S, Cosman D (1987) Determination of the minimum polypeptide lengths of the functionally active sites of human interleukins 1 alpha and 1 beta. Proc Natl Acad Sci USA 84:4572–4576. doi:10.1073/pnas.84.13.4572

    Article  PubMed  CAS  Google Scholar 

  2. Black RA, Kronheim SR, Merriam JE, March CJ, Hopp TP (1989) A pre-aspartate-specific protease from human leukocytes that cleaves pro-interleukin-1 beta. J Biol Chem 264:5323–5326

    PubMed  CAS  Google Scholar 

  3. Kostura MJ, Tocci MJ, Limjuco G et al (1989) Identification of a monocyte specific pre-interleukin 1 beta convertase activity. Proc Natl Acad Sci USA 86:5227–5231. doi:10.1073/pnas.86.14.5227

    Article  PubMed  CAS  Google Scholar 

  4. Howard AD, Chartrain N, Ding GF et al (1991) Probing the role of interleukin-1 beta convertase in interleukin-1 beta secretion. Agents Actions Suppl 35:77–83

    PubMed  CAS  Google Scholar 

  5. Thornberry NA, Bull HG, Calaycay JR et al (1992) A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356:768–774. doi:10.1038/356768a0

    Article  PubMed  CAS  Google Scholar 

  6. Miller BE, Krasney PA, Gauvin DM et al (1995) Inhibition of mature IL-1 beta production in murine macrophages and a murine model of inflammation by WIN 67694, an inhibitor of IL-1 beta converting enzyme. J Immunol 154:1331–1338

    PubMed  CAS  Google Scholar 

  7. Ayala JM, Yamin TT, Egger LA, Chin J, Kostura MJ, Miller DK (1994) IL-1 beta-converting enzyme is present in monocytic cells as an inactive 45-kDa precursor. J Immunol 153:2592–2599

    PubMed  CAS  Google Scholar 

  8. Cerretti DP, Kozlosky CJ, Mosley B et al (1992) Molecular cloning of the interleukin-1 beta converting enzyme. Science 256:97–100. doi:10.1126/science.1373520

    Article  PubMed  CAS  Google Scholar 

  9. Walker NP, Talanian RV, Brady KD et al (1994) Crystal structure of the cysteine protease interleukin-1 beta-converting enzyme: a (p20/p10)2 homodimer. Cell 78:343–352. doi:10.1016/0092-8674(94)90303-4

    Article  PubMed  CAS  Google Scholar 

  10. Wilson KP, Black JA, Thomson JA et al (1994) Structure and mechanism of interleukin-1 beta converting enzyme. Nature 370:270–275. doi:10.1038/370270a0

    Article  PubMed  CAS  Google Scholar 

  11. Gu Y, Wu J, Faucheu C et al (1995) Interleukin-1 beta converting enzyme requires oligomerization for activity of processed forms in vivo. EMBO J 14:1923–1931

    PubMed  CAS  Google Scholar 

  12. Rodriguez J, Lazebnik Y (1999) Caspase-9 and APAF-1 form an active holoenzyme. Genes Dev 13:3179–3184. doi:10.1101/gad.13.24.3179

    Article  PubMed  CAS  Google Scholar 

  13. Boatright KM, Renatus M, Scott FL et al (2003) A unified model for apical caspase activation. Mol Cell 11:529–541. doi:10.1016/S1097-2765(03)00051-0

    Article  PubMed  CAS  Google Scholar 

  14. Sleath PR, Hendrickson RC, Kronheim SR, March CJ, Black RA (1990) Substrate specificity of the protease that processes human interleukin-1 beta. J Biol Chem 265:14526–14528

    PubMed  CAS  Google Scholar 

  15. Scott AM, Saleh M (2007) The inflammatory caspases: guardians against infections and sepsis. Cell Death Differ 14:23–31. doi:10.1038/sj.cdd.4402026

    Article  PubMed  CAS  Google Scholar 

  16. Garcia-Calvo M, Peterson EP, Leiting B, Ruel R, Nicholson DW, Thornberry NA (1998) Inhibition of human caspases by peptide-based and macromolecular inhibitors. J Biol Chem 273:32608–32613. doi:10.1074/jbc.273.49.32608

    Article  PubMed  CAS  Google Scholar 

  17. Ghayur T, Banerjee S, Hugunin M et al (1997) Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production. Nature 386:619–623. doi:10.1038/386619a0

    Article  PubMed  CAS  Google Scholar 

  18. Schmitz J, Owyang A, Oldham E et al (2005) IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23:479–490. doi:10.1016/j.immuni.2005.09.015

    Article  PubMed  CAS  Google Scholar 

  19. Kumar S, Hanning CR, Brigham-Burke MR et al (2002) Interleukin-1F7B (IL-1H4/IL-1F7) is processed by caspase-1 and mature IL-1F7B binds to the IL-18 receptor but does not induce IFN-gamma production. Cytokine 18:61–71. doi:10.1006/cyto.2002.0873

    Article  PubMed  CAS  Google Scholar 

  20. Dinarello CA (2002) The IL-1 family and inflammatory diseases. Clin Exp Rheumatol 20:S1–S13

    PubMed  CAS  Google Scholar 

  21. Dinarello CA, Wolff SM (1993) The role of interleukin-1 in disease. N Engl J Med 328:106–113. doi:10.1056/NEJM199301143280207

    Article  PubMed  CAS  Google Scholar 

  22. Miura M, Zhu H, Rotello R, Hartwieg EA, Yuan J (1993) Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C elegans cell death gene ced-3. Cell 75:653–660. doi:10.1016/0092-8674(93)90486-A

    Article  PubMed  CAS  Google Scholar 

  23. Kuida K, Lippke JA, Ku G et al (1995) Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science 267:2000–2003. doi:10.1126/science.7535475

    Article  PubMed  CAS  Google Scholar 

  24. Li P, Allen H, Banerjee S et al (1995) Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock. Cell 80:401–411. doi:10.1016/0092-8674(95)90490-5

    Article  PubMed  CAS  Google Scholar 

  25. Chen Y, Smith MR, Thirumalai K, Zychlinsky A (1996) A bacterial invasin induces macrophage apoptosis by binding directly to ICE. EMBO J 15:3853–3860

    PubMed  CAS  Google Scholar 

  26. Hilbi H, Moss JE, Hersh D et al (1998) Shigella-induced apoptosis is dependent on caspase-1 which binds to IpaB. J Biol Chem 273:32895–32900. doi:10.1074/jbc.273.49.32895

    Article  PubMed  CAS  Google Scholar 

  27. Hersh D, Monack DM, Smith MR, Ghori N, Falkow S, Zychlinsky A (1999) The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc Natl Acad Sci USA 96:2396–2401. doi:10.1073/pnas.96.5.2396

    Article  PubMed  CAS  Google Scholar 

  28. Brennan MA, Cookson BT (2000) Salmonella induces macrophage death by caspase-1-dependent necrosis. Mol Microbiol 38:31–40. doi:10.1046/j.1365-2958.2000.02103.x

    Article  PubMed  CAS  Google Scholar 

  29. Mariathasan S, Newton K, Monack DM et al (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430:213–218. doi:10.1038/nature02664

    Article  PubMed  CAS  Google Scholar 

  30. Sun GW, Lu J, Pervaiz S, Cao WP, Gan YH (2005) Caspase-1 dependent macrophage death induced by Burkholderia pseudomallei. Cell Microbiol 7:1447–1458. doi:10.1111/j.1462-5822.2005.00569.x

    Article  PubMed  CAS  Google Scholar 

  31. Mariathasan S, Weiss DS, Dixit VM, Monack DM (2005) Innate immunity against Francisella tularensis is dependent on the ASC/caspase-1 axis. J Exp Med 202:1043–1049. doi:10.1084/jem.20050977

    Article  PubMed  CAS  Google Scholar 

  32. Lara-Tejero M, Sutterwala FS, Ogura Y et al (2006) Role of the caspase-1 inflammasome in Salmonella typhimurium pathogenesis. J Exp Med 203:1407–1412. doi:10.1084/jem.20060206

    Article  PubMed  CAS  Google Scholar 

  33. Zamboni DS, Kobayashi KS, Kohlsdorf T et al (2006) The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat Immunol 7:318–325. doi:10.1038/ni1305

    Article  PubMed  CAS  Google Scholar 

  34. Molofsky AB, Byrne BG, Whitfield NN et al (2006) Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection. J Exp Med 203:1093–1104. doi:10.1084/jem.20051659

    Article  PubMed  CAS  Google Scholar 

  35. Sutterwala FS, Mijares LA, Li L, Ogura Y, Kazmierczak BI, Flavell RA (2007) Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. J Exp Med 204:3235–3245. doi:10.1084/jem.20071239

    Article  PubMed  CAS  Google Scholar 

  36. Bergsbaken T, Cookson BT (2007) Macrophage activation redirects yersinia-infected host cell death from apoptosis to caspase-1-dependent pyroptosis. PLoS Pathog 3:e161. doi:10.1371/journal.ppat.0030161

  37. Cervantes J, Nagata T, Uchijima M, Shibata K, Koide Y (2008) Intracytosolic Listeria monocytogenes induces cell death through caspase-1 activation in murine macrophages. Cell Microbiol 10:41–52

    PubMed  CAS  Google Scholar 

  38. Labbé K, Saleh M (2008) Cell death in the host response to pathogens. Cell Death Differ 15:1339–1349. doi:10.1038/cdd.2008.91

    Google Scholar 

  39. Kayalar C, Ord T, Testa MP, Zhong LT, Bredesen DE (1996) Cleavage of actin by interleukin 1 beta-converting enzyme to reverse DNase I inhibition. Proc Natl Acad Sci USA 93:2234–2238. doi:10.1073/pnas.93.5.2234

    Article  PubMed  CAS  Google Scholar 

  40. Beyaert R, Kidd VJ, Cornelis S et al (1997) Cleavage of PITSLRE kinases by ICE/CASP-1 and CPP32/CASP-3 during apoptosis induced by tumor necrosis factor. J Biol Chem 272:11694–11697. doi:10.1074/jbc.272.18.11694

    Article  PubMed  CAS  Google Scholar 

  41. Kahns S, Kalai M, Jakobsen LD, Clark BF, Vandenabeele P, Jensen PH (2003) Caspase-1 and caspase-8 cleave and inactivate cellular parkin. J Biol Chem 278:23376–23380. doi:10.1074/jbc.M300495200

    Article  PubMed  CAS  Google Scholar 

  42. Chae JJ, Komarow HD, Cheng J et al (2003) Targeted disruption of pyrin, the FMF protein, causes heightened sensitivity to endotoxin and a defect in macrophage apoptosis. Mol Cell 11:591–604. doi:10.1016/S1097-2765(03)00056-X

    Article  PubMed  CAS  Google Scholar 

  43. Lamkanfi M, Kanneganti TD, Van Damme P et al (2008) Targeted peptide-centric proteomics reveals caspase-7 as a substrate of the caspase-1 inflammasomes. Mol Cell Proteomics 7:2350–2363

    Google Scholar 

  44. Shao W, Yeretssian G, Doiron K, Hussain SN, Saleh M (2007) The caspase-1 digestome identifies the glycolysis pathway as a target during infection and septic shock. J Biol Chem 282:36321–36329. doi:10.1074/jbc.M708182200

    Article  PubMed  CAS  Google Scholar 

  45. Cramer T, Yamanishi Y, Clausen BE et al (2003) HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 112:645–657. doi:10.1016/S0092-8674(03)00154-5

    Article  PubMed  CAS  Google Scholar 

  46. Gurcel L, Abrami L, Girardin S, Tschopp J, van der Goot FG (2006) Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell 126:1135–1145. doi:10.1016/j.cell.2006.07.033

    Article  PubMed  CAS  Google Scholar 

  47. Keller M, Ruegg A, Werner S, Beer HD (2008) Active caspase-1 is a regulator of unconventional protein secretion. Cell 132:818–831. doi:10.1016/j.cell.2007.12.040

    Article  PubMed  CAS  Google Scholar 

  48. Joshi VD, Kalvakolanu DV, Hebel JR, Hasday JD, Cross AS (2002) Role of caspase 1 in murine antibacterial host defenses and lethal endotoxemia. Infect Immun 70:6896–6903. doi:10.1128/IAI.70.12.6896-6903.2002

    Article  PubMed  CAS  Google Scholar 

  49. Sansonetti PJ, Phalipon A, Arondel J et al (2000) Caspase-1 activation of IL-1beta and IL-18 are essential for Shigella flexneri-induced inflammation. Immunity 12:581–590. doi:10.1016/S1074-7613(00)80209-5

    Article  PubMed  CAS  Google Scholar 

  50. Raupach B, Peuschel SK, Monack DM, Zychlinsky A (2006) Caspase-1-mediated activation of interleukin-1beta (IL-1beta) and IL-18 contributes to innate immune defenses against Salmonella enterica serovar Typhimurium infection. Infect Immun 74:4922–4926. doi:10.1128/IAI.00417-06

    Article  PubMed  CAS  Google Scholar 

  51. Mencacci A, Bacci A, Cenci E et al (2000) Interleukin 18 restores defective Th1 immunity to Candida albicans in caspase 1-deficient mice. Infect Immun 68:5126–5131. doi:10.1128/IAI.68.9.5126-5131.2000

    Article  PubMed  CAS  Google Scholar 

  52. Fantuzzi G, Zheng H, Faggioni R et al (1996) Effect of endotoxin in IL-1 beta-deficient mice. J Immunol 157:291–296

    PubMed  CAS  Google Scholar 

  53. Sarkar A, Hall MW, Exline M et al (2006) Caspase-1 regulates Escherichia coli sepsis and splenic B cell apoptosis independently of interleukin-1beta and interleukin-18. Am J Respir Crit Care Med 174:1003–1010. doi:10.1164/rccm.200604-546OC

    Article  PubMed  CAS  Google Scholar 

  54. Norman J, Yang J, Fink G et al (1997) Severity and mortality of experimental pancreatitis are dependent on interleukin-1 converting enzyme (ICE). J Interferon Cytokine Res 17:113–118

    Article  PubMed  CAS  Google Scholar 

  55. Siegmund B, Lehr HA, Fantuzzi G, Dinarello CA (2001) IL-1 beta -converting enzyme (caspase-1) in intestinal inflammation. Proc Natl Acad Sci USA 98:13249–13254. doi:10.1073/pnas.231473998

    Article  PubMed  CAS  Google Scholar 

  56. Kaushal GP, Singh AB, Shah SV (1998) Identification of gene family of caspases in rat kidney and altered expression in ischemia-reperfusion injury. Am J Physiol 274:F587–F595

    PubMed  CAS  Google Scholar 

  57. Edelstein CL, Shi Y, Schrier RW (1999) Role of caspases in hypoxia-induced necrosis of rat renal proximal tubules. J Am Soc Nephrol 10:1940–1949

    PubMed  CAS  Google Scholar 

  58. Melnikov VY, Ecder T, Fantuzzi G et al (2001) Impaired IL-18 processing protects caspase-1-deficient mice from ischemic acute renal failure. J Clin Invest 107:1145–1152. doi:10.1172/JCI12089

    Article  PubMed  CAS  Google Scholar 

  59. Chatterjee PK, Todorovic Z, Sivarajah A et al (2004) Differential effects of caspase inhibitors on the renal dysfunction and injury caused by ischemia-reperfusion of the rat kidney. Eur J Pharmacol 503:173–183. doi:10.1016/j.ejphar.2004.09.025

    Article  PubMed  CAS  Google Scholar 

  60. Wang W, Faubel S, Ljubanovic D et al (2005) Endotoxemic acute renal failure is attenuated in caspase-1-deficient mice. Am J Physiol Renal Physiol 288:F997–F1004. doi:10.1152/ajprenal.00130.2004

    Article  PubMed  CAS  Google Scholar 

  61. Liu HF, Liang D, Wang LM et al (2005) Effects of specific interleukin-1beta-converting enzyme inhibitor on ischemic acute renal failure in murine models. Acta Pharmacol Sin 26:1345–1351. doi:10.1111/j.1745-7254.2005.00200.x

    Article  PubMed  CAS  Google Scholar 

  62. Yamanaka K, Clark R, Dowgiert R et al (2006) Expression of interleukin-18 and caspase-1 in cutaneous T-cell lymphoma. Clin Cancer Res 12:376–382. doi:10.1158/1078-0432.CCR-05-1777

    Article  PubMed  CAS  Google Scholar 

  63. Vidal-Vanaclocha F, Fantuzzi G, Mendoza L et al (2000) IL-18 regulates IL-1beta-dependent hepatic melanoma metastasis via vascular cell adhesion molecule-1. Proc Natl Acad Sci USA 97:734–739. doi:10.1073/pnas.97.2.734

    Article  PubMed  CAS  Google Scholar 

  64. Mouawad R, Antoine EC, Gil-Delgado M, Khayat D, Soubrane C (2002) Serum caspase-1 levels in metastatic melanoma patients: relationship with tumour burden and non-response to biochemotherapy. Melanoma Res 12:343–348. doi:10.1097/00008390-200208000-00006

    Article  PubMed  CAS  Google Scholar 

  65. Furlan R, Filippi M, Bergami A et al (1999) Peripheral levels of caspase-1 mRNA correlate with disease activity in patients with multiple sclerosis; a preliminary study. J Neurol Neurosurg Psychiatry 67:785–788. doi:10.1136/jnnp.67.6.785

    Article  PubMed  CAS  Google Scholar 

  66. Huang WX, Huang P, Hillert J (2004) Increased expression of caspase-1 and interleukin-18 in peripheral blood mononuclear cells in patients with multiple sclerosis. Mult Scler 10:482–487. doi:10.1191/1352458504ms1071oa

    Article  PubMed  CAS  Google Scholar 

  67. Franciotta D, Martino G, Zardini E et al (2002) Caspase-1 levels in biological fluids from patients with multiple sclerosis and from patients with other neurological and non-neurological diseases. Eur Cytokine Netw 13:99–103

    PubMed  CAS  Google Scholar 

  68. Ku G, Faust T, Lauffer LL, Livingston DJ, Harding MW (1996) Interleukin-1 beta converting enzyme inhibition blocks progression of type II collagen-induced arthritis in mice. Cytokine 8:377–386. doi:10.1006/cyto.1996.0052

    Article  PubMed  CAS  Google Scholar 

  69. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426. doi:10.1016/S1097-2765(02)00599-3

    Article  PubMed  CAS  Google Scholar 

  70. Tschopp J, Martinon F, Burns K (2003) NALPs: a novel protein family involved in inflammation. Nat Rev Mol Cell Biol 4:95–104. doi:10.1038/nrm1019

    Article  PubMed  CAS  Google Scholar 

  71. Inohara C, McDonald C, Nunez G (2005) NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Annu Rev Biochem 74:355–383. doi:10.1146/annurev.biochem.74.082803.133347

    Article  PubMed  CAS  Google Scholar 

  72. Kobe B, Kajava AV (2001) The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol 11:725–732. doi:10.1016/S0959-440X(01)00266-4

    Article  PubMed  CAS  Google Scholar 

  73. Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5:987–995. doi:10.1038/ni1112

    Article  PubMed  CAS  Google Scholar 

  74. Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17:1–14. doi:10.1093/intimm/dxh186

    Article  PubMed  CAS  Google Scholar 

  75. Fesik SW (2000) Insights into programmed cell death through structural biology. Cell 103:273–282. doi:10.1016/S0092-8674(00)00119-7

    Article  PubMed  CAS  Google Scholar 

  76. Hofmann K (1999) The modular nature of apoptotic signaling proteins. Cell Mol Life Sci 55:1113–1128. doi:10.1007/s000180050361

    Article  PubMed  CAS  Google Scholar 

  77. Martinon F, Hofmann K, Tschopp J (2001) The pyrin domain: a possible member of the death domain-fold family implicated in apoptosis and inflammation. Curr Biol 11:R118–R120. doi:10.1016/S0960-9822(01)00056-2

    Article  PubMed  CAS  Google Scholar 

  78. Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J (2004) NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20:319–325. doi:10.1016/S1074-7613(04)00046-9

    Article  PubMed  CAS  Google Scholar 

  79. Roy CR (2002) Exploitation of the endoplasmic reticulum by bacterial pathogens. Trends Microbiol 10:418–424. doi:10.1016/S0966-842X(02)02421-6

    Article  PubMed  CAS  Google Scholar 

  80. Yamamoto Y, Klein TW, Newton CA, Widen R, Friedman H (1988) Growth of Legionella pneumophila in thioglycolate-elicited peritoneal macrophages from A/J mice. Infect Immun 56:370–375

    PubMed  CAS  Google Scholar 

  81. Beckers MC, Yoshida S, Morgan K, Skamene E, Gros P (1995) Natural resistance to infection with Legionella pneumophila: chromosomal localization of the Lgn1 susceptibility gene. Mamm Genome 6:540–545. doi:10.1007/BF00356173

    Article  PubMed  CAS  Google Scholar 

  82. Dietrich WF, Damron DM, Isberg RR, Lander ES, Swanson MS (1995) Lgn1, a gene that determines susceptibility to Legionella pneumophila, maps to mouse chromosome 13. Genomics 26:443–450. doi:10.1016/0888-7543(95)80161-E

    Article  PubMed  CAS  Google Scholar 

  83. Diez E, Beckers MC, Ernst E et al (1997) Genetic and physical mapping of the mouse host resistance locus Lgn1. Mamm Genome 8:682–685. doi:10.1007/s003359900536

    Article  PubMed  CAS  Google Scholar 

  84. Growney JD, Dietrich WF (2000) High-resolution genetic and physical map of the Lgn1 interval in C57BL/6 J implicates Naip2 or Naip5 in Legionella pneumophila pathogenesis. Genome Res 10:1158–1171. doi:10.1101/gr.10.8.1158

    Article  PubMed  CAS  Google Scholar 

  85. Diez E, Lee SH, Gauthier S et al (2003) Birc1e is the gene within the Lgn1 locus associated with resistance to Legionella pneumophila. Nat Genet 33:55–60. doi:10.1038/ng1065

    Article  PubMed  CAS  Google Scholar 

  86. Wright EK, Goodart SA, Growney JD et al (2003) Naip5 affects host susceptibility to the intracellular pathogen Legionella pneumophila. Curr Biol 13:27–36. doi:10.1016/S0960-9822(02)01359-3

    Article  PubMed  CAS  Google Scholar 

  87. Ren T, Zamboni DS, Roy CR, Dietrich WF, Vance RE (2006) Flagellin-deficient Legionella mutants evade caspase-1- and Naip5-mediated macrophage immunity. PLoS Pathog 2:e18. doi:10.1371/journal.ppat.0020018

  88. Amer A, Franchi L, Kanneganti TD et al (2006) Regulation of Legionella phagosome maturation and infection through flagellin and host Ipaf. J Biol Chem 281:35217–35223. doi:10.1074/jbc.M604933200

    Article  PubMed  CAS  Google Scholar 

  89. Vinzing M, Eitel J, Lippmann J et al (2008) NAIP and Ipaf control Legionella pneumophila replication in human cells. J Immunol 180:6808–6815

    PubMed  CAS  Google Scholar 

  90. Miao EA, Alpuche-Aranda CM, Dors M et al (2006) Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol 7:569–575. doi:10.1038/ni1344

    Article  PubMed  CAS  Google Scholar 

  91. Franchi L, Amer A, Body-Malapel M et al (2006) Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages. Nat Immunol 7:576–582. doi:10.1038/ni1346

    Article  PubMed  CAS  Google Scholar 

  92. Lamkanfi M, Amer A, Kanneganti TD et al (2007) The Nod-like receptor family member Naip5/Birc1e restricts Legionella pneumophila growth independently of caspase-1 activation. J Immunol 178:8022–8027

    PubMed  CAS  Google Scholar 

  93. Lightfield KL, Persson J, Brubaker SW et al (2008) Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nat Immunol 9:1171–1178. doi:10.1038/ni.1646

    Article  PubMed  CAS  Google Scholar 

  94. Coers J, Vance RE, Fontana MF, Dietrich WF (2007) Restriction of Legionella pneumophila growth in macrophages requires the concerted action of cytokine and Naip5/Ipaf signalling pathways. Cell Microbiol 9:2344–2357. doi:10.1111/j.1462-5822.2007.00963.x

    Article  PubMed  CAS  Google Scholar 

  95. Monack DM, Hersh D, Ghori N, Bouley D, Zychlinsky A, Falkow S (2000) Salmonella exploits caspase-1 to colonize Peyer’s patches in a murine typhoid model. J Exp Med 192:249–258. doi:10.1084/jem.192.2.249

    Article  PubMed  CAS  Google Scholar 

  96. Sutterwala FS, Ogura Y, Szczepanik M et al (2006) Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity 24:317–327. doi:10.1016/j.immuni.2006.02.004

    Article  PubMed  CAS  Google Scholar 

  97. Mariathasan S, Weiss DS, Newton K et al (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440:228–232. doi:10.1038/nature04515

    Article  PubMed  CAS  Google Scholar 

  98. Suzuki T, Franchi L, Toma C et al (2007) Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog 3:e111. doi:10.1371/journal.ppat.0030111

  99. Willingham SB, Bergstralh DT, O’Connor W et al (2007) Microbial pathogen-induced necrotic cell death mediated by the inflammasome components CIAS1/cryopyrin/NLRP3 and ASC. Cell Host Microbe 2:147–159. doi:10.1016/j.chom.2007.07.009

    Article  PubMed  CAS  Google Scholar 

  100. Perregaux D, Gabel CA (1994) Interleukin-1 beta maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. J Biol Chem 269:15195–15203

    PubMed  CAS  Google Scholar 

  101. Surprenant A, Rassendren F, Kawashima E, North RA, Buell G (1996) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272:735–738. doi:10.1126/science.272.5262.735

    Article  PubMed  CAS  Google Scholar 

  102. Solle M, Labasi J, Perregaux DG et al (2001) Altered cytokine production in mice lacking P2X(7) receptors. J Biol Chem 276:125–132. doi:10.1074/jbc.M006781200

    Article  PubMed  CAS  Google Scholar 

  103. Piccini A, Carta S, Tassi S, Lasiglie D, Fossati G, Rubartelli A (2008) ATP is released by monocytes stimulated with pathogen-sensing receptor ligands and induces IL-1beta and IL-18 secretion in an autocrine way. Proc Natl Acad Sci USA 105:8067–8072. doi:10.1073/pnas.0709684105

    Article  PubMed  CAS  Google Scholar 

  104. Walev I, Klein J, Husmann M et al (2000) Potassium regulates IL-1 beta processing via calcium-independent phospholipase A2. J Immunol 164:5120–5124

    PubMed  CAS  Google Scholar 

  105. Andrei C, Margiocco P, Poggi A, Lotti LV, Torrisi MR, Rubartelli A (2004) Phospholipases C and A2 control lysosome-mediated IL-1 beta secretion: Implications for inflammatory processes. Proc Natl Acad Sci USA 101:9745–9750. doi:10.1073/pnas.0308558101

    Article  PubMed  CAS  Google Scholar 

  106. Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J 25:5071–5082. doi:10.1038/sj.emboj.7601378

    Article  PubMed  CAS  Google Scholar 

  107. Pelegrin P, Surprenant A (2007) Pannexin-1 couples to maitotoxin- and nigericin-induced interleukin-1beta release through a dye uptake-independent pathway. J Biol Chem 282:2386–2394. doi:10.1074/jbc.M610351200

    Article  PubMed  CAS  Google Scholar 

  108. Kanneganti TD, Lamkanfi M, Kim YG et al (2007) Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling. Immunity 26:433–443. doi:10.1016/j.immuni.2007.03.008

    Article  PubMed  CAS  Google Scholar 

  109. Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237–241. doi:10.1038/nature04516

    Article  PubMed  CAS  Google Scholar 

  110. Mossman BT, Churg A (1998) Mechanisms in the pathogenesis of asbestosis and silicosis. Am J Respir Crit Care Med 157:1666–1680

    PubMed  CAS  Google Scholar 

  111. Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320:674–677. doi:10.1126/science.1156995

    Article  PubMed  CAS  Google Scholar 

  112. Cassel SL, Eisenbarth SC, Iyer SS et al (2008) The Nalp3 inflammasome is essential for the development of silicosis. Proc Natl Acad Sci USA 105:9035–9040. doi:10.1073/pnas.0803933105

    Article  PubMed  CAS  Google Scholar 

  113. Hornung V, Bauernfeind F, Halle A et al (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9:847–856. doi:10.1038/ni.1631

    Article  PubMed  CAS  Google Scholar 

  114. Eisenbarth SC, Colegio OR, O’Connor W, Sutterwala FS, Flavell RA (2008) Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453:1122–1126. doi:10.1038/nature06939

    Article  PubMed  CAS  Google Scholar 

  115. Halle A, Hornung V, Petzold GC et al (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9:857–865. doi:10.1038/ni.1636

    Article  PubMed  CAS  Google Scholar 

  116. Gavin AL, Hoebe K, Duong B et al (2006) Adjuvant-enhanced antibody responses in the absence of toll-like receptor signaling. Science 314:1936–1938. doi:10.1126/science.1135299

    Article  PubMed  CAS  Google Scholar 

  117. Piggott DA, Eisenbarth SC, Xu L et al (2005) MyD88-dependent induction of allergic Th2 responses to intranasal antigen. J Clin Invest 115:459–467

    PubMed  CAS  Google Scholar 

  118. Kool M, Soullie T, van Nimwegen M et al (2008) Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J Exp Med 205:869–882. doi:10.1084/jem.20071087

    Article  PubMed  CAS  Google Scholar 

  119. Li H, Willingham SB, Ting JP, Re F (2008) Cutting edge: inflammasome activation by alum and alum’s adjuvant effect are mediated by NLRP3. J Immunol 181:17–21. doi:10.1111/j.1365-2567.2007.02774.x

    Article  PubMed  CAS  Google Scholar 

  120. Shankar GM, Li S, Mehta TH et al (2008) Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14:837–842. doi:10.1038/nm1782

    Article  PubMed  CAS  Google Scholar 

  121. Faustin B, Lartigue L, Bruey JM et al (2007) Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol Cell 25:713–724. doi:10.1016/j.molcel.2007.01.032

    Article  PubMed  CAS  Google Scholar 

  122. Feldmeyer L, Keller M, Niklaus G, Hohl D, Werner S, Beer HD (2007) The inflammasome mediates UVB-induced activation and secretion of interleukin-1beta by keratinocytes. Curr Biol 17:1140–1145. doi:10.1016/j.cub.2007.05.074

    Article  PubMed  CAS  Google Scholar 

  123. Martinon F, Agostini L, Meylan E, Tschopp J (2004) Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr Biol 14:1929–1934. doi:10.1016/j.cub.2004.10.027

    Article  PubMed  CAS  Google Scholar 

  124. Pan Q, Mathison J, Fearns C et al (2007) MDP-induced interleukin-1beta processing requires Nod2 and CIAS1/NALP3. J Leukoc Biol 82:177–183. doi:10.1189/jlb.1006627

    Article  PubMed  CAS  Google Scholar 

  125. Hsu LC, Ali SR, McGillivray S et al (2008) A NOD2-NALP1 complex mediates caspase-1-dependent IL-1beta secretion in response to Bacillus anthracis infection and muramyl dipeptide. Proc Natl Acad Sci USA 105:7803–7808. doi:10.1073/pnas.0802726105

    Article  PubMed  CAS  Google Scholar 

  126. Wang S, Miura M, Jung YK, Zhu H, Li E, Yuan J (1998) Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92:501–509. doi:10.1016/S0092-8674(00)80943-5

    Article  PubMed  CAS  Google Scholar 

  127. Mayor A, Martinon F, De Smedt T, Petrilli V, Tschopp J (2007) A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses. Nat Immunol 8:497–503. doi:10.1038/ni1459

    Article  PubMed  CAS  Google Scholar 

  128. Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329. doi:10.1038/nature05286

    Article  PubMed  CAS  Google Scholar 

  129. Arthur JC, Lich JD, Aziz RK, Kotb M, Ting JP (2007) Heat shock protein 90 associates with monarch-1 and regulates its ability to promote degradation of NF-kappaB-inducing kinase. J Immunol 179:6291–6296

    PubMed  CAS  Google Scholar 

  130. da Silva Correia J, Miranda Y, Leonard N, Ulevitch R (2007) SGT1 is essential for Nod1 activation. Proc Natl Acad Sci USA 104:6764–6769. doi:10.1073/pnas.0610926104

    Article  PubMed  Google Scholar 

  131. Stehlik C, Dorfleutner A (2007) COPs and POPs: modulators of inflammasome activity. J Immunol 179:7993–7998

    PubMed  CAS  Google Scholar 

  132. Martinon F, Tschopp J (2004) Inflammatory caspases; linking an intracellular innate immune system to autoinflammatory diseases. Cell 117:561–574. doi:10.1016/j.cell.2004.05.004

    Article  PubMed  CAS  Google Scholar 

  133. Nadiri A, Wolinski MK, Saleh M (2006) The inflammatory caspases: key players in the host response to pathogenic invasion and sepsis. J Immunol 177:4239–4245

    PubMed  CAS  Google Scholar 

  134. Humke EW, Shriver SK, Starovasnik MA, Fairbrother WJ, Dixit VM (2000) ICEBERG: a novel inhibitor of interleukin-1beta generation. Cell 103:99–111. doi:10.1016/S0092-8674(00)00108-2

    Article  PubMed  CAS  Google Scholar 

  135. Druilhe A, Srinivasula SM, Razmara M, Ahmad M, Alnemri ES (2001) Regulation of IL-1beta generation by Pseudo-ICE and ICEBERG, two dominant negative caspase recruitment domain proteins. Cell Death Differ 8:649–657. doi:10.1038/sj.cdd.4400881

    Article  PubMed  CAS  Google Scholar 

  136. Saleh M, Mathison JC, Wolinski MK, Bensinger SJ, Fitzgerald P, Droin N, Ulevitch RJ, Green DR, Nicholson DW (2006) Enhanced bacterial clearance and sepsis resistance in caspase-12 deficient mice. Nature 440:1064–1068. doi:10.1038/nature04656

    Article  PubMed  CAS  Google Scholar 

  137. Razmara M, Srinivasula SM, Wang L et al (2002) CARD-8 protein, a new CARD family member that regulates caspase-1 activation and apoptosis. J Biol Chem 277:13952–13958. doi:10.1074/jbc.M107811200

    Article  PubMed  CAS  Google Scholar 

  138. Rosenstiel P, Huse K, Till A et al (2006) A short isoform of NOD2/CARD15, NOD2-S, is an endogenous inhibitor of NOD2/receptor-interacting protein kinase 2-induced signaling pathways. Proc Natl Acad Sci USA 103:3280–3285. doi:10.1073/pnas.0505423103

    Article  PubMed  CAS  Google Scholar 

  139. Fairbrother WJ, Gordon NC, Humke EW et al (2001) The PYRIN domain: a member of the death domain-fold superfamily. Protein Sci 10:1911–1918. doi:10.1110/ps.13801

    Article  PubMed  CAS  Google Scholar 

  140. Stehlik C, Krajewska M, Welsh K, Krajewski S, Godzik A, Reed JC (2003) The PAAD/PYRIN-only protein POP1/ASC2 is a modulator of ASC-mediated nuclear-factor-kappa B and pro-caspase-1 regulation. Biochem J 373:101–113. doi:10.1042/BJ20030304

    Article  PubMed  CAS  Google Scholar 

  141. Dorfleutner A, Bryan NB, Talbott SJ et al (2007) Cellular pyrin domain-only protein 2 is a candidate regulator of inflammasome activation. Infect Immun 75:1484–1492. doi:10.1128/IAI.01315-06

    Article  PubMed  CAS  Google Scholar 

  142. Bedoya F, Sandler LL, Harton JA (2007) Pyrin-only protein 2 modulates NF-kappaB and disrupts ASC:CLR interactions. J Immunol 178:3837–3845

    PubMed  CAS  Google Scholar 

  143. Dorfleutner A, Talbott SJ, Bryan NB et al (2007) A Shope Fibroma virus PYRIN-only protein modulates the host immune response. Virus Genes 35:685–694. doi:10.1007/s11262-007-0141-9

    Article  PubMed  CAS  Google Scholar 

  144. Johnston JB, Barrett JW, Nazarian SH et al (2005) A poxvirus-encoded pyrin domain protein interacts with ASC–1 to inhibit host inflammatory and apoptotic responses to infection. Immunity 23:587–598. doi:10.1016/j.immuni.2005.10.003

    Article  PubMed  CAS  Google Scholar 

  145. Bruey JM, Bruey-Sedano N, Luciano F et al (2007) Bcl-2 and Bcl-XL regulate proinflammatory caspase-1 activation by interaction with NALP1. Cell 129:45–56. doi:10.1016/j.cell.2007.01.045

    Article  PubMed  CAS  Google Scholar 

  146. Greten FR, Arkan MC, Bollrath J et al (2007) NF-kappaB is a negative regulator of IL-1beta secretion as revealed by genetic and pharmacological inhibition of IKKbeta. Cell 130:918–931. doi:10.1016/j.cell.2007.07.009

    Article  PubMed  CAS  Google Scholar 

  147. Steimle V, Otten LA, Zufferey M, Mach B (1993) Complementation cloning of an MHC class II transactivator mutated in hereditary MHC class II deficiency (or bare lymphocyte syndrome). Cell 75:135–146

    PubMed  CAS  Google Scholar 

  148. Reith W, Mach B (2001) The bare lymphocyte syndrome and the regulation of MHC expression. Annu Rev Immunol 19:331–373. doi:10.1146/annurev.immunol.19.1.331

    Article  PubMed  CAS  Google Scholar 

  149. Kastner DL (2005) Hereditary periodic Fever syndromes. Hematology (Am Soc Hematol Educ Program) 74–81. doi:10.1182/asheducation-2005.1.74

  150. Hoffman HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD (2001) Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle–Wells syndrome. Nat Genet 29:301–305. doi:10.1038/ng756

    Article  PubMed  CAS  Google Scholar 

  151. Aganna E, Martinon F, Hawkins PN et al (2002) Association of mutations in the NALP3/CIAS1/PYPAF1 gene with a broad phenotype including recurrent fever, cold sensitivity, sensorineural deafness, and AA amyloidosis. Arthritis Rheum 46:2445–2452. doi:10.1002/art.10509

    Article  PubMed  CAS  Google Scholar 

  152. Feldmann J, Prieur AM, Quartier P et al (2002) Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1, a gene highly expressed in polymorphonuclear cells and chondrocytes. Am J Hum Genet 71:198–203. doi:10.1086/341357

    Article  PubMed  CAS  Google Scholar 

  153. McDermott MF, Tschopp J (2007) From inflammasomes to fevers, crystals and hypertension: how basic research explains inflammatory diseases. Trends Mol Med 13:381–388. doi:10.1016/j.molmed.2007.07.005

    Article  PubMed  CAS  Google Scholar 

  154. Dowds TA, Masumoto J, Zhu L, Inohara N, Nunez G (2004) Cryopyrin-induced interleukin 1beta secretion in monocytic cells: enhanced activity of disease-associated mutants and requirement for ASC. J Biol Chem 279:21924–21928. doi:10.1074/jbc.M401178200

    Article  PubMed  CAS  Google Scholar 

  155. Hugot JP, Chamaillard M, Zouali H et al (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411:599–603. doi:10.1038/35079107

    Article  PubMed  CAS  Google Scholar 

  156. Ogura Y, Bonen DK, Inohara N et al (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411:603–606. doi:10.1038/35079114

    Article  PubMed  CAS  Google Scholar 

  157. Kanazawa N, Okafuji I, Kambe N et al (2005) Early-onset sarcoidosis and CARD15 mutations with constitutive nuclear factor-kappaB activation: common genetic etiology with Blau syndrome. Blood 105:1195–1197. doi:10.1182/blood-2004-07-2972

    Article  PubMed  CAS  Google Scholar 

  158. Aksentijevich I, Nowak M, Mallah M et al (2002) De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): a new member of the expanding family of pyrin-associated autoinflammatory diseases. Arthritis Rheum 46:3340–3348. doi:10.1002/art.10688

    Article  PubMed  CAS  Google Scholar 

  159. Hawkins PN, Lachmann HJ, McDermott MF (2003) Interleukin-1-receptor antagonist in the Muckle–Wells syndrome. N Engl J Med 348:2583–2584. doi:10.1056/NEJM200306193482523

    Article  PubMed  Google Scholar 

  160. Hoffman HM, Rosengren S, Boyle DL et al (2004) Prevention of cold-associated acute inflammation in familial cold autoinflammatory syndrome by interleukin-1 receptor antagonist. Lancet 364:1779–1785. doi:10.1016/S0140-6736(04)17401-1

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maya Saleh.

Additional information

Christian R. McIntire and Garabet Yeretssian have contributed equally to this review.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McIntire, C.R., Yeretssian, G. & Saleh, M. Inflammasomes in infection and inflammation. Apoptosis 14, 522–535 (2009). https://doi.org/10.1007/s10495-009-0312-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-009-0312-3

Keywords

Navigation