Skip to main content

Advertisement

Log in

Arsenic induced apoptosis in malignant melanoma cells is enhanced by menadione through ROS generation, p38 signaling and p53 activation

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Introduction

Resistance to apoptosis is a prominent feature of melanoma. Pharmacological concentration of arsenic in combination with a widely known oxidant, menadione was explored in this study to synergistically sensitize malignant melanoma cells to apoptosis. The molecular mechanism of apoptosis and the signaling-pathways involved were thoroughly investigated.

Materials methods and results

Menadione synergized NaAsO2 to significantly increase ROS generation and facilitate the major apoptotic signaling events: alteration of mitochondrial membrane potential, cytochrome c release and anti-apoptotic protein Bcl-2 down-regulation and subsequent activation of caspase-9 and caspase-3 followed by poly-ADP-ribose polymerase-1 cleavage. Antioxidant N-acetyl-l-cysteine antagonized these events. Investigation of the signaling-pathway revealed significant suppression of AP-1 activity but not NF-κB upon NaAsO2 and menadione application. An increase in p38 phosphorylation and p53 protein expression did also dictate the apoptotic response. Suppression of p38 activation with SB203580 and inhibition of p53 expression by siRNA attenuated apoptosis. Transfection of p53, in p53 null HCT cells augmented the apoptotic events. Moreover, the treatment also led to tumor size reduction in BALB/c mice developed by intra-dermal B16 mouse melanoma cell injection; however, it had no detectable pro-proliferative or pro-apoptotic effect on non-tumor keratinocytes, normal fibroblasts or PBMC.

Conclusion

This study thus provides an insight into innovative mechanisms of melanoma sensitization, a proper cure against which is still elusive. Taken together, our data also provides the first evidence of arsenic activity accentuation by menadione through modulation of specific signaling-pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jurcic JG, Soignet SL, Maslak AP (2007) Diagnosis and treatment of acute promyelocytic leukemia. Curr Oncol Rep 9:337–344. doi:10.1007/s11912-007-0045-9

    Article  PubMed  CAS  Google Scholar 

  2. Chou WC, Dang CV (2005) Acute promyelocytic leukemia: recent advances in therapy and molecular basis of response to arsenic therapies. Curr Opin Hematol 12:1–6. doi:10.1097/01.moh.0000148552.93303.45

    Article  PubMed  CAS  Google Scholar 

  3. Cheung WM, Chu PW, Kwong YL (2007) Effects of arsenic trioxide on the cellular proliferation, apoptosis and differentiation of human neuroblastoma cells. Cancer Lett 246:122–128. doi:10.1016/j.canlet.2006.02.009

    Article  PubMed  CAS  Google Scholar 

  4. Shen ZY, Zhang Y, Chen JY et al (2004) Intratumoral injection of arsenic to enhance antitumor efficacy in human esophageal carcinoma cell xenografts. Oncol Rep 11:155–159

    PubMed  CAS  Google Scholar 

  5. Huang RQ, Gao SF, Wang WL, Staunton S, Wang G (2006) Soil arsenic availability and the transfer of soil arsenic to crops in suburban areas in Fujian Province, southeast China. Sci Total Environ 368:531–541. doi:10.1016/j.scitotenv.2006.03.013

    Article  PubMed  CAS  Google Scholar 

  6. Bode AM, Dong Z (2002) The paradox of arsenic: molecular mechanisms of cell transformation and chemotherapeutic effects. Crit Rev Oncol Hematol 42:5–24. doi:10.1016/S1040-8428(01)00215-3

    Article  PubMed  Google Scholar 

  7. Engel RH, Evens AM (2006) Oxidative stress and apoptosis: a new treatment paradigm in cancer. Front Biosci 11:300–312. doi:10.2741/1798

    Article  PubMed  CAS  Google Scholar 

  8. Kang YH, Yi MJ, Kim MJ et al (2004) Caspase-independent cell death by arsenic trioxide in human cervical cancer cells: reactive oxygen species-mediated poly(ADP-ribose) polymerase-1 activation signals apoptosis-inducing factor release from mitochondria. Cancer Res 64:8960–8967. doi:10.1158/0008-5472.CAN-04-1830

    Article  PubMed  CAS  Google Scholar 

  9. Yang J, Li H, Chen YY et al (2004) Anthraquinones sensitize tumor cells to arsenic cytotoxicity in vitro and in vivo via reactive oxygen species-mediated dual regulation of apoptosis. Free Radic Biol Med 37:2027–2041. doi:10.1016/j.freeradbiomed.2004.09.016

    Article  PubMed  CAS  Google Scholar 

  10. Yi J, Yang J, He R et al (2004) Emodin enhances arsenic trioxide-induced apoptosis via generation of reactive oxygen species and inhibition of survival signaling. Cancer Res 64:108–116. doi:10.1158/0008-5472.CAN-2820-2

    Article  PubMed  CAS  Google Scholar 

  11. Kassouf W, Highshaw R, Nelkin GM, Dinney CP, Kamat AM (2006) Vitamins C and K3 sensitize human urothelial tumors to gemcitabine. J Urol 176:1642–1647. doi:10.1016/j.juro.2006.06.042

    Article  PubMed  CAS  Google Scholar 

  12. Hitomi M, Yokoyama F, Kita Y et al (2005) Antitumor effects of vitamins K1, K2 and K3 on hepatocellular carcinoma in vitro and in vivo. Int J Oncol 26:713–720

    PubMed  CAS  Google Scholar 

  13. Thor H, Smith MT, Hartzell P, Bellomo G, Jewell SA, Orrenius S (1982) The metabolism of menadione (2-methyl-1, 4-naphthoquinone) by isolated hepatocytes A study of the implications of oxidative stress in intact cells. J Biol Chem 257:12419–12425

    PubMed  CAS  Google Scholar 

  14. Ivanov VN, Bhoumik A, Ronai Z (2003) Death receptors and melanoma resistance to apoptosis. Oncogene 22:3152–3161. doi:10.1038/sj.onc.1206456

    Article  PubMed  CAS  Google Scholar 

  15. Soengas MS, Lowe SW (2003) Apoptosis and melanoma chemoresistance. Oncogene 22:3138–3151. doi:10.1038/sj.onc.1206454

    Article  PubMed  CAS  Google Scholar 

  16. Serrone L, Zeuli M, Sega FM, Cognetti F (2000) Dacarbazine-based chemotherapy for metastatic melanoma: thirty-year experience overview. J Exp Clin Cancer Res 19:21–34

    PubMed  CAS  Google Scholar 

  17. Tsao H, Atkins MB, Sober AJ (2004) Management of cutaneous melanoma. N Engl J Med 351:998–1012. doi:10.1056/NEJMra041245

    Article  PubMed  CAS  Google Scholar 

  18. Kim KB, Bedikian AY, Camacho LH, Papadopoulos NE, McCullough C (2005) A phase II trial of arsenic trioxide in patients with metastatic melanoma. Cancer 104:1687–1692

    Article  PubMed  CAS  Google Scholar 

  19. Panka DJ, Atkins MB, Mier JW (2006) Targeting the mitogen-activated protein kinase pathway in the treatment of malignant melanoma. Clin Cancer Res 12:2371s–2375s. doi:10.1158/1078-0432.CCR-05-2539

    Article  PubMed  CAS  Google Scholar 

  20. Chowdhury R, Dutta A, Chaudhuri SR, Sharma N, Giri AK, Chaudhuri K (2008) In vitro and in vivo reduction of sodium arsenite induced toxicity by aqueous garlic extract. Food Chem Toxicol 46:740–751. doi:10.1016/j.fct.2007.09.108

    Article  PubMed  CAS  Google Scholar 

  21. Miller WH Jr, Schipper HM, Lee JS, Singer J, Waxman S (2002) Mechanisms of action of arsenic trioxide. Cancer Res 62:3893–3903

    PubMed  CAS  Google Scholar 

  22. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 126:131–138. doi:10.1016/0003-2697(82)90118-X

    Article  PubMed  CAS  Google Scholar 

  23. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. doi:10.1016/S0076-6879(84)05016-3

    Article  PubMed  CAS  Google Scholar 

  24. Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    PubMed  CAS  Google Scholar 

  25. Wilber CG, Del Pomo M (1949) Comparative study of lipids in whole carcasses of Arctic and non-Arctic fish. Proc Soc Exp Biol Med 72:418–420

    PubMed  CAS  Google Scholar 

  26. Haraguchi M, Torii S, Matsuzawa S et al (2000) Apoptotic protease activating factor 1 (Apaf-1)-independent cell death suppression by Bcl-2. J Exp Med 191:1709–1720. doi:10.1084/jem.191.10.1709

    Article  PubMed  CAS  Google Scholar 

  27. Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC (1994) Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371:346–347. doi:10.1038/371346a0

    Article  PubMed  CAS  Google Scholar 

  28. Hayashi T, Hideshima T, Akiyama M et al (2002) Arsenic trioxide inhibits growth of human multiple myeloma cells in the bone marrow microenvironment. Mol Cancer Ther 1:851–860

    PubMed  CAS  Google Scholar 

  29. McNeely SC, Belshoff AC, Taylor BF et al (2008) Sensitivity to sodium arsenite in human melanoma cells depends upon susceptibility to arsenite-induced mitotic arrest. Toxicol Appl Pharmacol 229:252–261. doi:10.1016/j.taap.2008.01.020

    Article  PubMed  CAS  Google Scholar 

  30. McNeely SC, Taylor BF, States JC (2008) Mitotic arrest-associated apoptosis induced by sodium arsenite in A375 melanoma cells is BUBR1-dependent. Toxicol Appl Pharmacol 231:61–67. doi:10.1016/j.taap.2008.03.020

    Article  PubMed  CAS  Google Scholar 

  31. Nordenson I, Beckman L (1991) Is the genotoxic effect of arsenic mediated by oxygen free radicals? Hum Hered 41:71–73. doi:10.1159/000153979

    Article  PubMed  CAS  Google Scholar 

  32. Liu SX, Athar M, Lippai I, Waldren C, Hei TK (2001) Induction of oxyradicals by arsenic: implication for mechanism of genotoxicity. Proc Natl Acad Sci USA 98:1643–1648. doi:10.1073/pnas.031482998

    Article  PubMed  CAS  Google Scholar 

  33. Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157. doi:10.1016/S0092-8674(00)80085-9

    Article  PubMed  CAS  Google Scholar 

  34. Alnemri ES, Livingston DJ, Nicholson DW et al (1996) Human ICE/CED-3 protease nomenclature. Cell 87:171. doi:10.1016/S0092-8674(00)81334-3

    Article  PubMed  CAS  Google Scholar 

  35. Soengas MS, Capodieci P, Polsky D et al (2001) Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409:207–211. doi:10.1038/35051606

    Article  PubMed  CAS  Google Scholar 

  36. Sun Y, Orrenius S, Pervaiz S, Fadeel B (2005) Plasma membrane sequestration of apoptotic protease-activating factor-1 in human B-lymphoma cells: a novel mechanism of chemoresistance. Blood 105:4070–4077. doi:10.1182/blood-2004-10-4075

    Article  PubMed  CAS  Google Scholar 

  37. Leaman DW, Chawla-Sarkar M, Vyas K et al (2002) Identification of X-linked Inhibitor of Apoptosis-associated Factor-1 as an Interferon-stimulated Gene That Augments TRAIL Apo2L-induced Apoptosis. J Biol Chem 277:28504–28511. doi:10.1074/jbc.M204851200

    Article  PubMed  CAS  Google Scholar 

  38. Hsu TC, Young MR, Cmarik J, Colburn NH (2000) Activator protein 1 (AP-1)- and nuclear factor kappaB (NF-kappaB)-dependent transcriptional events in carcinogenesis. Free Radic Biol Med 28:1338–1348. doi:10.1016/S0891-5849(00)00220-3

    Article  PubMed  CAS  Google Scholar 

  39. Mathas S, Lietz A, Janz M et al (2003) Inhibition of NF-kappaB essentially contributes to arsenic-induced apoptosis. Blood 102:1028–1034. doi:10.1182/blood-2002-04-1154

    Article  PubMed  CAS  Google Scholar 

  40. Zhou LF, Zhu Y, Cui XF, Xie WP, Hu AH, Yin KS (2006) Arsenic trioxide, a potent inhibitor of NF-kappaB, abrogates allergen-induced airway hyper responsiveness and inflammation. Respir Res 7:146. doi:10.1186/1465-9921-7-146

    Article  PubMed  Google Scholar 

  41. Bulavin DV, Saito S, Hollander MC et al (1999) Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J 18:6845–6854. doi:10.1093/emboj/18.23.6845

    Article  PubMed  CAS  Google Scholar 

  42. Yu J, Qian H, Li Y et al (2007) Arsenic trioxide (As2O3) reduces the invasive and metastatic properties of cervical cancer cells in vitro and in vivo. Gynecol Oncol 106:400–406. doi:10.1016/j.ygyno.2007.04.016

    Article  PubMed  CAS  Google Scholar 

  43. Baysan A, Yel L, Gollapudi S, Su H, Gupta S (2007) Arsenic trioxide induces apoptosis via the mitochondrial pathway by upregulating the expression of Bax and Bim in human B cells. Int J Oncol 30:313–318

    PubMed  CAS  Google Scholar 

  44. Woo SH, Park IC, Park MJ et al (2002) Arsenic trioxide induces apoptosis through a reactive oxygen species-dependent pathway and loss of mitochondrial membrane potential in HeLa cells. Int J Oncol 21:57–63

    PubMed  CAS  Google Scholar 

  45. Burdon RH (1996) Control of cell proliferation by reactive oxygen species. Biochem Soc Trans 24:1028–1032

    PubMed  CAS  Google Scholar 

  46. Criddle DN, Gillies S, Baumgartner-Wilson HK et al (2006) Menadione-induced reactive oxygen species generation via redox cycling promotes apoptosis of murine pancreatic acinar cells. J Biol Chem 281:40485–40492. doi:10.1074/jbc.M607704200

    Article  PubMed  CAS  Google Scholar 

  47. Finkel T (2001) Reactive oxygen species and signal transduction. IUBMB Life 52:3–6. doi:10.1080/15216540252774694

    Article  PubMed  CAS  Google Scholar 

  48. Sauer H, Wartenberg M, Hescheler J (2001) Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem 11:173–186. doi:10.1159/000047804

    Article  PubMed  CAS  Google Scholar 

  49. Levkau B, Scatena M, Giachelli CM, Ross R, Raines EW (1999) Apoptosis overrides survival signals through a caspase-mediated dominant-negative NF-kappa B loop. Nat Cell Biol 1:227–233. doi:10.1038/12050

    Article  PubMed  CAS  Google Scholar 

  50. Karin M, Lin A (2002) NF-kappaB at the crossroads of life and death. Nat Immunol 3:221–227. doi:10.1038/ni0302-221

    Article  PubMed  CAS  Google Scholar 

  51. Keller D, Zeng X, Li X et al (1999) The p38 MAPK inhibitor SB203580 alleviates ultraviolet-induced phosphorylation at serine 389 but not serine 15 and activation of p53. Biochem Biophys Res Commun 261:464–471. doi:10.1006/bbrc.1999.1023

    Article  PubMed  CAS  Google Scholar 

  52. Huang C, Ma WY, Li J, Dong Z (1999) Arsenic induces apoptosis through a c-Jun NH2-terminal kinase-dependent, p53-independent pathway. Cancer Res 59:3053–3058

    PubMed  CAS  Google Scholar 

  53. Huang C, Ma WY, Li J, Goranson A, Dong Z (1999) Requirement of Erk, but not JNK, for arsenite-induced cell transformation. J Biol Chem 274:14595–14601. doi:10.1074/jbc.274.21.14595

    Article  PubMed  CAS  Google Scholar 

  54. Huang C, Ma WY, Maxiner A, Sun Y, Dong Z (1999) p38 kinase mediates UV-induced phosphorylation of p53 protein at serine 389. J Biol Chem 274:12229–12235. doi:10.1074/jbc.274.18.12229

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study is supported by grants (CMM-0003, CMM-0016 and IAP-0001) and research fellowships (R.C., S·C. and P·C.) from Council of Scientific and Industrial Research (CSIR) and University of Grant Commission (UGC) Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keya Chaudhuri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chowdhury, R., Chowdhury, S., Roychoudhury, P. et al. Arsenic induced apoptosis in malignant melanoma cells is enhanced by menadione through ROS generation, p38 signaling and p53 activation. Apoptosis 14, 108–123 (2009). https://doi.org/10.1007/s10495-008-0284-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-008-0284-8

Keywords

Navigation