Skip to main content

Advertisement

Log in

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induced mitochondrial pathway to apoptosis and caspase activation is potentiated by phospholipid scramblase-3

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Tumor Necrosis Factor (TNF)-Related Apoptosis-Inducing Ligand (TRAIL) initiate pathways of cell death in which caspase activation is mediated either directly (without mitochondrial amplification), or indirectly via the release of apoptogenic factors from mitochondria. Phospholipid scramblases (PLS) are enzymes that play a key role in cellular function by inducing bidirectional movement of membrane lipids. Changes in mitochondrial membrane lipids, cardiolipin, are critical for mediating apoptotic response in many cell-types. PLS3 is a phospholipid scramblase that is localized to mitochondria and is thought to be involved in the regulation of apoptotic signals. Here we report that exogenous-expression of PLS3 enhances apoptotic death induced by TRAIL. This is acheived by potentiating the mitochondrial arm of the death pathway. Thereby, PLS3 expression facilitates changes in mitochondrial membrane lipids that promote the release of apoptogenic factors and consequent full activation and processing of the caspase-9 and effector caspase-3. Moreover, we show that knock-down of endogenous PLS3 suppresses TRAIL-induced changes in cardiolipin. Finally, we demonstrate that TRAIL-induced activation of PKC-delta mediates regulation of the PLS3-induced changes in cardiolipin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abe K, Kurakin A, Mohseni-Maybodi M, Kay B, Khosravi-Far R (2000) The complexity of TNF-related apoptosis-inducing ligand. Ann NY Acad Sci 926:52–63

    PubMed  CAS  Google Scholar 

  2. LeBlanc HN, Ashkenazi A (2003) Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ 10:66–75

    Article  PubMed  CAS  Google Scholar 

  3. MacFarlane M (2003) TRAIL-induced signalling and apoptosis. Toxicol Lett 139:89–97

    Article  PubMed  CAS  Google Scholar 

  4. Lockshin RA, Zakeri Z (2004) Apoptosis, autophagy, and more. Int J Biochem Cell Biol 36:2405–2419

    Article  PubMed  CAS  Google Scholar 

  5. Khosravi-Far R, Esposti MD (2004) Death receptor signals to mitochondria. Cancer Biol Ther 3:1051–1057

    Article  PubMed  CAS  Google Scholar 

  6. Wang X (2001) The expanding role of mitochondria in apoptosis. Genes Dev 15:2922–2933

    PubMed  CAS  Google Scholar 

  7. Peter ME, Krammer PH (2003) The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ 10:26–35

    Article  PubMed  CAS  Google Scholar 

  8. Golstein P (1997) Cell death: TRAIL and its receptors. Curr Biol 7: R750–R753

    Article  PubMed  CAS  Google Scholar 

  9. Lockshin RA, Zakeri Z (2007) Cell death in health and disease. J Cell Mol Med 11:1214–1224

    Article  PubMed  Google Scholar 

  10. Ashkenazi A, Pai RC, Fong S et al (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 104:155–162

    Article  PubMed  CAS  Google Scholar 

  11. French LE, Tschopp J (1999) The TRAIL to selective tumor death. Nat Med 5:146–147

    Article  PubMed  CAS  Google Scholar 

  12. Ozoren N, El-Deiry WS (2003) Cell surface Death Receptor signaling in normal and cancer cells. Semin Cancer Biol 13:135–147

    Article  PubMed  CAS  Google Scholar 

  13. Thorburn A (2004) Death receptor-induced cell killing. Cell Signal 16:139–144

    Article  PubMed  CAS  Google Scholar 

  14. Song K, Benhaga N, Anderson RL, Khosravi-Far R (2006) Transduction of tumor necrosis factor-related apoptosis-inducing ligand into hematopoietic cells leads to inhibition of syngeneic tumor growth in vivo. Cancer Res 66:6304–6311

    Article  PubMed  CAS  Google Scholar 

  15. Kayagaki N, Yamaguchi N, Nakayama M, Eto H, Okumura K, Yagita H (1999) Type I interferons (IFNs) regulate tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) expression on human T cells: a novel mechanism for the antitumor effects of type I IFNs. J Exp Med 189:1451–1460

    Article  PubMed  CAS  Google Scholar 

  16. Mackay F, Kalled SL (2002) TNF ligands and receptors in autoimmunity: an update. Curr Opin Immunol 14:783–790

    Article  PubMed  CAS  Google Scholar 

  17. Mariani SM, Krammer PH (1998) Surface expression of TRAIL/Apo-2 ligand in activated mouse T and B cells. Eur J Immunol 28:1492–1498

    Article  PubMed  CAS  Google Scholar 

  18. Martinez-Lorenzo MJ, Alava MA, Gamen S et al (1998) Involvement of APO2 ligand/TRAIL in activation-induced death of Jurkat and human peripheral blood T cells. Eur J Immunol 28:2714–2725

    Article  PubMed  CAS  Google Scholar 

  19. Wang S, El-Deiry WS (2003) TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 22:8628–8633

    Article  PubMed  CAS  Google Scholar 

  20. Zamai L, Ahmad M, Bennett IM, Azzoni L, Alnemri ES, Perussia B (1998) Natural killer (NK) cell-mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells. J Exp Med 188:2375–2380

    Article  PubMed  CAS  Google Scholar 

  21. Ozoren N, El-Deiry WS (2002) Defining characteristics of Types I and II apoptotic cells in response to TRAIL. Neoplasia 4:551–557

    Article  PubMed  CAS  Google Scholar 

  22. Scaffidi C, Fulda S, Srinivasan A et al (1998) Two CD95 (APO-1/Fas) signaling pathways. Embo J 17:1675–1687

    Article  PubMed  CAS  Google Scholar 

  23. Muzio M, Stockwell BR, Stennicke HR, Salvesen GS, Dixit VM (1998) An induced proximity model for caspase-8 activation. J Biol Chem 273:2926–2930

    Article  PubMed  CAS  Google Scholar 

  24. Yang X, Chang HY, Baltimore D (1998) Autoproteolytic activation of pro-caspase by oligomerization. Mol Cell 2:319

    Article  Google Scholar 

  25. Boatright KM, Renatus M, Scott FL et al (2003) A unified model for apical caspase activation. Mol Cell 11:529–541

    Article  PubMed  CAS  Google Scholar 

  26. Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2:647–656

    Article  PubMed  CAS  Google Scholar 

  27. Wallach D, Varfolomeev EE, Malinin NL, Goltsev YV, Kovalenko AV, Boldin MP (1999) Tumor necrosis factor receptor and Fas signaling mechanisms. Annu Rev Immunol 17:331–367

    Article  PubMed  CAS  Google Scholar 

  28. Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305–1308

    Article  PubMed  CAS  Google Scholar 

  29. Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326(Pt 1):1–16

    PubMed  CAS  Google Scholar 

  30. Matarrese P, Gambardella L, Cassone A, Vella S, Cauda R, Malorni W (2003) Mitochondrial membrane hyperpolarization hijacks activated T lymphocytes toward the apoptotic-prone phenotype: homeostatic mechanisms of HIV protease inhibitors. J Immunol 170:6006–6015

    PubMed  CAS  Google Scholar 

  31. Ouasti S, Matarrese P, Paddon R et al (2007) Death receptor ligation triggers membrane scrambling between golgi and mitochondria. Cell Death Differ 14:453–461

    Article  PubMed  CAS  Google Scholar 

  32. Sahu SK, Gummadi SN, Manoj N, Aradhyam GK (2007) Phospholipid scramblases: an overview. Arch Biochem Biophys 462:103–114

    Article  PubMed  CAS  Google Scholar 

  33. Fadok VA, Bratton DL, Rose DM, Pearson A, Ezekewitz RA, Henson PM (2000) A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405:85–90

    Article  PubMed  CAS  Google Scholar 

  34. Liu J, Chen J, Dai Q, Lee RM (2003) Phospholipid scramblase 3 is the mitochondrial target of protein kinase C delta-induced apoptosis. Cancer Res 63:1153–1156

    PubMed  CAS  Google Scholar 

  35. Liu J, Dai Q, Chen J et al (2003) Phospholipid scramblase 3 controls mitochondrial structure, function, and apoptotic response. Mol Cancer Res 1:892–902

    PubMed  CAS  Google Scholar 

  36. Sandra F, Degli Esposti M, Ndebele K et al (2005) Tumor necrosis factor-related apoptosis-inducing ligand alters mitochondrial membrane lipids. Cancer Res 65:8286–8297

    Article  PubMed  CAS  Google Scholar 

  37. Esposti MD (2002) The roles of Bid. Apoptosis 7:433–440

    Article  PubMed  CAS  Google Scholar 

  38. Goonesinghe A, Mundy ES, Smith M, Khosravi-Far R, Martinou JC, Esposti MD (2005) Pro-apoptotic Bid induces membrane perturbation by inserting selected lysolipids into the bilayer. Biochem J 387:109–118

    Article  PubMed  CAS  Google Scholar 

  39. Kuwana T, Mackey MR, Perkins G et al (2002) Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111:331–342

    Article  PubMed  CAS  Google Scholar 

  40. Newmeyer DD, Ferguson-Miller S (2003) Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112:481–490

    Article  PubMed  CAS  Google Scholar 

  41. Wei MC, Zong WX, Cheng EH et al (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292:727–730

    Article  PubMed  CAS  Google Scholar 

  42. Cifone MG, Roncaioli P, De Maria R et al (1995) Multiple pathways originate at the Fas/APO-1 (CD95) receptor: sequential involvement of phosphatidylcholine-specific phospholipase C and acidic sphingomyelinase in the propagation of the apoptotic signal. EMBO J 14:5859–5868

    PubMed  CAS  Google Scholar 

  43. Exton JH (1997) Cell signalling through guanine-nucleotide-binding regulatory proteins (G proteins) and phospholipases. Eur J Biochem 243:10–20

    Article  PubMed  CAS  Google Scholar 

  44. Han JS, Hyun BC, Kim JH, Shin I (1999) Fas-mediated activation of phospholipase D is coupled to the stimulation of phosphatidylcholine-specific phospholipase C in A20 cells. Arch Biochem Biophys 367:233–239

    Article  PubMed  CAS  Google Scholar 

  45. Boneau C (1960) The effects of violations of assumptions underlying the test. Psychol Bull 57:49–64

    Article  PubMed  CAS  Google Scholar 

  46. Haldane J (1956) The Wilcoxon and related tests of significance. Experientia 205

  47. Westfall PH, Krishen A, Young SS (1998) Using prior information to allocate significance levels for multiple endpoints. Statistics Med 17:2107–2119

    Article  CAS  Google Scholar 

  48. Kimberley FC, Screaton GR (2004) Following a TRAIL: update on a ligand and its five receptors. Cell Res 14:359–372

    Article  PubMed  CAS  Google Scholar 

  49. Liu J, Epand RF, Durrant D et al (2008) Role of phospholipid Scramblase 3 in the regulation of tumor necrosis factor-alpha-induced apoptosis. Biochemistry 47:4518–4529

    Article  PubMed  CAS  Google Scholar 

  50. Esposti MD, Cristea IM, Gaskell SJ, Nakao Y, Dive C (2003) Proapoptotic Bid binds to monolysocardiolipin, a new molecular connection between mitochondrial membranes and cell death. Cell Death Differ 10:1300–1309

    Article  PubMed  CAS  Google Scholar 

  51. Salvesen GS, Dixit VM (1997) Caspases: intracellular signaling by proteolysis. Cell 91:443–446

    Article  PubMed  CAS  Google Scholar 

  52. Slee EA, Adrain C, Martin SJ (1999) Serial killers: ordering caspase activation events in apoptosis. Cell Death Differ 6:1067–1074

    Article  PubMed  CAS  Google Scholar 

  53. Jin TG, Kurakin A, Benhaga N et al (2004) Fas-associated protein with death domain (FADD)-independent recruitment of c-FLIPL to death receptor 5. J Biol Chem 279:55594–55601

    Article  PubMed  CAS  Google Scholar 

  54. Kikkawa U, Matsuzaki H, Yamamoto T (2002) Protein kinase C delta (PKC delta): activation mechanisms and functions. J Biochem (Tokyo) 132:831–839

    CAS  Google Scholar 

  55. Brodie C, Blumberg PM (2003) Regulation of cell apoptosis by protein kinase C delta. Apoptosis 8:19–27

    Article  PubMed  CAS  Google Scholar 

  56. Sumitomo M, Ohba M, Asakuma J et al (2002) Protein kinase c delta amplifies ceramide formation via mitochondrial signaling in prostate cancer cells. J Clin Invest 109:827–836

    PubMed  CAS  Google Scholar 

  57. Zhao J, Zhou Q, Stout JG, Luhm RA, Wiedmer T, Sims PJ (1997) Molecular cloning of human plasma membrane phospholipid scrambalase. J Biol Chem 272:18240

    Article  PubMed  Google Scholar 

  58. He Y, Liu J, Grossman D et al (2007) Phosphorylation of mitochondrial phospholipid scramblase 3 by protein kinase C-delta induces its activation and facilitates mitochondrial targeting of tBid. J Cell Biochem 101:1210–1221

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs. Wiedmer and Ohno for scramblase and PKCδ constructs, respectively. This work was supported by NIH grants CA105306 and HL080192 to RKF. RKF is an American Cancer Society Scholar. KN was supported by NIH 5 T32 HL07893 and UNCF/MERCK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roya Khosravi-Far.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ndebele, K., Gona, P., Jin, TG. et al. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induced mitochondrial pathway to apoptosis and caspase activation is potentiated by phospholipid scramblase-3. Apoptosis 13, 845–856 (2008). https://doi.org/10.1007/s10495-008-0219-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-008-0219-4

Keywords

Navigation