Skip to main content
Log in

Death receptor-4 (DR4) expression is regulated by transcription factor NF-κB in response to etoposide treatment

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Tumour necrosis factor related apoptosis inducing ligand (TRAIL) binds to death receptor 4 (DR4) activating the apoptotic signalling pathway. DNA damaging agents (genotoxins) such as etoposide increase DR4 expression and when combined with TRAIL induce a synergistic apoptotic response. The mechanism for up-regulation of DR4 expression following genotoxin treatment is not well understood. Herein, we determined that transcription factor NF-κB plays a role in genotoxin induced DR4 expression. Increased expression of DR4 following etoposide treatment is blocked by inhibition of the NF-κB pathway. Moreover, expression of the p65 subunit of NF-κB is sufficient to increase DR4 protein levels. Indeed, knockdown of p65 by RNA interference blocked etoposide up-regulation of DR4. We further identified a functional NF-κB binding site located in the DR4 promoter. Mutation of this site abrogates the induction of luciferase activity after p65 over-expression. Furthermore, electromobility shift assays and chromatin immunoprecipitaton suggest that NF-κB binds to this site upon etoposide treatment. MEK kinase 1 (MEKK1) is a serine threonine kinase that is activated following etoposide treatment and activates NF-κB. Expression of the kinase inactive MEKK1 (MEKK1-KM) abrogates the up-regulation of DR4 after etoposide treatment. Taken together, NF-κB plays a role in up-regulation of DR4 following etoposide treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Walczak H, Miller RE, Ariail K et al (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5:157–163

    Article  PubMed  CAS  Google Scholar 

  2. Griffith TS, Chin WA, Jackson GC, Lynch DH, Kubin MZ (1998) Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells. J Immunol 161:2833–2840

    PubMed  CAS  Google Scholar 

  3. Gibson SB, Oyer R, Spalding AC, Anderson SM, Johnson GL (2000) Increased expression of death receptors 4 and 5 synergizes the apoptosis response to combined treatment with etoposide and TRAIL. Mol Cell Biol 20:205–212

    Article  PubMed  CAS  Google Scholar 

  4. Singh TR, Shankar S, Srivastava RK (2005) HDAC inhibitors enhance the apoptosis-inducing potential of TRAIL in breast carcinoma. Oncogene 24:4609–4623

    Article  PubMed  CAS  Google Scholar 

  5. Duiker EW, Mom CH, de Jong S et al (2006) The clinical trail of TRAIL. Eur J Cancer 42:2233–2240

    Article  PubMed  CAS  Google Scholar 

  6. Zhang L, Fang B (2005) Mechanisms of resistance to TRAIL-induced apoptosis in cancer. Cancer Gene Ther 12:228–237

    Article  PubMed  CAS  Google Scholar 

  7. Keane MM, Ettenberg SA, Nau MM, Russell EK, Lipkowitz S (1999) Chemotherapy augments TRAIL-induced apoptosis in breast cell lines. Cancer Res 59:734–741

    PubMed  CAS  Google Scholar 

  8. Shetty S, Gladden JB, Henson ES et al (2002) Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) up-regulates death receptor 5 (DR5) mediated by NFκB activation in epithelial derived cell lines. Apoptosis 7:413–420

    Article  PubMed  CAS  Google Scholar 

  9. Shetty S, Graham BA, Brown JG et al (2005) Transcription factor NF-κB differentially regulates death receptor 5 expression involving histone deacetylase 1. Mol Cell Biol 25:5404–5416

    Article  PubMed  CAS  Google Scholar 

  10. Yoshida T, Maeda A, Tani N, Sakai T (2001) Promoter structure and transcription initiation sites of the human death receptor 5/TRAIL-R2 gene. FEBS Lett 507:381–385

    Article  PubMed  CAS  Google Scholar 

  11. Liu X, Yue P, Khuri FR, Sun SY (2004) p53 Upregulates death receptor 4 expression through an intronic p53 binding site. Cancer Res 64:5078–5083

    Article  PubMed  CAS  Google Scholar 

  12. Ravi R, Bedi GC, Engstrom LW et al (2001) Regulation of death receptor expression and TRAIL/Apo2L-induced apoptosis by NF-κB. Nat Cell Biol 3:409–416

    Article  PubMed  CAS  Google Scholar 

  13. Chen X, Kandasamy K, Srivastava RK (2003) Differential roles of RelA (p65) and c-Rel subunits of nuclear factor κB in tumor necrosis factor-related apoptosis-inducing ligand signaling. Cancer Res 63:1059–1066

    PubMed  CAS  Google Scholar 

  14. Mendoza FJ, Henson ES, Gibson SB (2005) MEKK1-induced apoptosis is mediated by Smac/Diablo release from the mitochondria. Biochem Biophys Res Commun 331:1089–1098

    Article  PubMed  CAS  Google Scholar 

  15. Bild AH, Mendoza FJ, Gibson EM et al (2002) MEKK1-induced apoptosis requires TRAIL death receptor activation and is inhibited by AKT/PKB through inhibition of MEKK1 cleavage. Oncogene 21:6649–6656

    Article  PubMed  CAS  Google Scholar 

  16. Gibson EM, Henson ES, Villanueva J, Gibson SB (2002) MEK kinase 1 induces mitochondrial permeability transition leading to apoptosis independent of cytochrome c release. J Biol Chem 277:10573–10580

    Article  PubMed  CAS  Google Scholar 

  17. Yujiri T, Fanger GR, Garrington TP, Schlesinger TK, Gibson S, Johnson GL (1999) MEK kinase 1 (MEKK1) transduces c-Jun NH2-terminal kinase activation in response to changes in the microtubule cytoskeleton. J Biol Chem 274:12605–12610

    Article  PubMed  CAS  Google Scholar 

  18. Gibson S, Widmann C, Johnson GL (1999) Differential involvement of MEK kinase 1 (MEKK1) in the induction of apoptosis in response to microtubule-targeted drugs versus DNA damaging agents. J Biol Chem 274:10916–10922

    Article  PubMed  CAS  Google Scholar 

  19. Widmann C, Gibson S, Johnson GL (1998) Caspase-dependent cleavage of signaling proteins during apoptosis. A turn-off mechanism for anti-apoptotic signals. J Biol Chem 273:7141–7147

    Article  PubMed  CAS  Google Scholar 

  20. Hirano M, Osada S, Aoki T et al (1996) MEK kinase is involved in tumor necrosis factor alpha-induced NF-κB activation and degradation of IκB-alpha. J Biol Chem 271:13234–13238

    Article  PubMed  CAS  Google Scholar 

  21. Lee FS, Peters RT, Dang LC, Maniatis T (1998) MEKK1 activates both IκB kinase alpha and IκB kinase beta. Proc Natl Acad Sci USA 95:9319–9324

    Article  PubMed  CAS  Google Scholar 

  22. David L (1998) Spector RDG, Leslie A. Leinwand. Culture and Biochemical analysis of Cells. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  23. Spencer VA, Sun JM, Li L, Davie JR (2003) Chromatin immunoprecipitation: a tool for studying histone acetylation and transcription factor binding. Methods 31:67–75

    Article  PubMed  CAS  Google Scholar 

  24. Heinemeyer T, Wingender E, Reuter I et al (1998) Databases on transcriptional regulation: TRANSFAC, TRRD and COMPEL. Nucleic Acids Res 26:362–367

    Article  PubMed  CAS  Google Scholar 

  25. Pierce JW, Schoenleber R, Jesmok G et al (1997) Novel inhibitors of cytokine-induced IκBalpha phosphorylation and endothelial cell adhesion molecule expression show anti-inflammatory effects in vivo. J Biol Chem 272:21096–21103

    Article  PubMed  CAS  Google Scholar 

  26. Brockman JA, Scherer DC, McKinsey TA et al (1995) Coupling of a signal response domain in I κB alpha to multiple pathways for NF-κB activation. Mol Cell Biol 15:2809–2818

    PubMed  CAS  Google Scholar 

  27. Pukac L, Kanakaraj P, Humphreys R et al (2005) HGS-ETR1, a fully human TRAIL-receptor 1 monoclonal antibody, induces cell death in multiple tumour types in vitro and in vivo. Br J Cancer 92:1430–1441

    Article  PubMed  CAS  Google Scholar 

  28. Vasilevskaya IA, O’Dwyer PJ (2005) 17-Allylamino-17-demethoxygeldanamycin overcomes TRAIL resistance in colon cancer cell lines. Biochem Pharmacol 70:580–589

    Article  PubMed  CAS  Google Scholar 

  29. Izeradjene K, Douglas L, Tillman DM, Delaney AB, Houghton JA (2005) Reactive oxygen species regulate caspase activation in tumor necrosis factor-related apoptosis-inducing ligand-resistant human colon carcinoma cell lines. Cancer Res 65:7436–7445

    Article  PubMed  CAS  Google Scholar 

  30. Bennett BL, Sasaki DT, Murray BW et al (2001) SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc Natl Acad Sci USA 98:13681–13686

    Article  PubMed  CAS  Google Scholar 

  31. Sayers TJ, Murphy WJ (2006) Combining proteasome inhibition with TNF-related apoptosis-inducing ligand (Apo2L/TRAIL) for cancer therapy. Cancer Immunol Immunother 55:76–84

    Article  PubMed  CAS  Google Scholar 

  32. Guan B, Yue P, Lotan R, Sun SY (2002) Evidence that the human death receptor 4 is regulated by activator protein 1. Oncogene 21:3121–3129

    Article  PubMed  CAS  Google Scholar 

  33. Kucharczak J, Simmons MJ, Fan Y, Gelinas C (2003) To be, or not to be: NF-κB is the answer–role of Rel/NF-κB in the regulation of apoptosis. Oncogene 22:8961–8982

    Article  PubMed  CAS  Google Scholar 

  34. Dutta J, Fan Y, Gupta N, Fan G, Gelinas C (2006) Current insights into the regulation of programmed cell death by NF-κB. Oncogene 25:6800–6816

    Article  PubMed  CAS  Google Scholar 

  35. Widmann C, Gibson S, Jarpe MB, Johnson GL (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79:143–180

    PubMed  CAS  Google Scholar 

  36. Xia Y, Makris C, Su B et al (2000) MEK kinase 1 is critically required for c-Jun N-terminal kinase activation by proinflammatory stimuli and growth factor-induced cell migration. Proc Natl Acad Sci USA 97:5243–5248

    Article  PubMed  CAS  Google Scholar 

  37. Xu S, Cobb MH (1997) MEKK1 binds directly to the c-Jun N-terminal kinases/stress-activated protein kinases. J Biol Chem 272:32056–32060

    Article  PubMed  CAS  Google Scholar 

  38. Nakano H, Shindo M, Sakon S et al (1998) Differential regulation of IκB kinase alpha and beta by two upstream kinases, NF-κB-inducing kinase and mitogen-activated protein kinase/ERK kinase kinase-1. Proc Natl Acad Sci USA 95:3537–3542

    Article  PubMed  CAS  Google Scholar 

  39. Nemoto S, DiDonato JA, Lin A (1998) Coordinate regulation of IκB kinases by mitogen-activated protein kinase kinase kinase 1 and NF-κB-inducing kinase. Mol Cell Biol 18:7336–7343

    PubMed  CAS  Google Scholar 

  40. Hinz S, Trauzold A, Boenicke L et al (2000) Bcl-XL protects pancreatic adenocarcinoma cells against CD95- and TRAIL-receptor-mediated apoptosis. Oncogene 19:5477–5486

    Article  PubMed  CAS  Google Scholar 

  41. Fulda S, Kufer MU, Meyer E, van Valen F, Dockhorn-Dworniczak B, Debatin KM (2001) Sensitization for death receptor- or drug-induced apoptosis by re-expression of caspase-8 through demethylation or gene transfer. Oncogene 20:5865–5877

    Article  PubMed  CAS  Google Scholar 

  42. Eggert A, Grotzer MA, Zuzak TJ et al (2001) Resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in neuroblastoma cells correlates with a loss of caspase-8 expression. Cancer Res 61:1314–1319

    PubMed  CAS  Google Scholar 

  43. Zhang L, Gu J, Lin T, Huang X, Roth JA, Fang B (2002) Mechanisms involved in development of resistance to adenovirus-mediated proapoptotic gene therapy in DLD1 human colon cancer cell line. Gene Ther 9:1262–1270

    Article  PubMed  CAS  Google Scholar 

  44. Kurbanov BM, Fecker LF, Geilen CC, Sterry W, Eberle J (2006) Resistance of melanoma cells to TRAIL does not result from upregulation of antiapoptotic proteins by NF-κB but is related to downregulation of initiator caspases and DR4. Oncogene

  45. Kabore AF, Sun J, Hu X, McCrea K, Johnston JB, Gibson SB (2006) The TRAIL apoptotic pathway mediates proteasome inhibitor induced apoptosis in primary chronic lymphocytic leukemia cells. Apoptosis 11:1175–1193

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Shi-Yong Sun (Emory University) for the kind gift of DR4 (−1773/+63) and DR4 (−586/+63) luciferase plasmid. Furthermore we would like to thank Human Genome Science for the kind gift of Matatumumab monoclonal antibody. The work is supported by a grant from Canadian Institutes of Health Research (MOP 68872). Mr. Mendoza is supported by a Natural Sciences and Engineering Research Council of Canada doctoral post graduate scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spencer B. Gibson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendoza, F.J., Ishdorj, G., Hu, X. et al. Death receptor-4 (DR4) expression is regulated by transcription factor NF-κB in response to etoposide treatment. Apoptosis 13, 756–770 (2008). https://doi.org/10.1007/s10495-008-0210-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-008-0210-0

Keywords

Navigation