Skip to main content
Log in

Trifolin acetate-induced cell death in human leukemia cells is dependent on caspase-6 and activates the MAPK pathway

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

In the present study we demonstrated that the flavonoid derivative trifolin acetate (TA), obtained by acetylation of naturally occurring trifolin, induces apoptosis. Associated downstream signaling events were also investigated. TA-induced cell death was prevented by the non-specific caspase inhibitor z-VAD-fmk and reduced by the presence of the selective caspase inhibitors z-LEHD-fmk (caspase-9), z-DEVD-fmk (caspase-3) and z-VEID-fmk (caspase-6). The apoptotic effect of TA was associated with (i) the release of cytochrome c from mitochondria which was not accompanied by dissipation of the mitochondrial membrane potential (ΔΨm), (ii) the activation of the mitogen-activated protein kinases (MAPKs) pathway and (iii) abrogated by the over-expression of Bcl-2 or Bcl-xL. TA-induced cell death was attenuated by inhibition of extracellular signal-regulated kinases (ERK) 1/2 with U0126 and inhibition of p38MAPK with SB203580. In contrast, inhibition of c-Jun NH2-terminal kinase (JNK) by SP600125 significantly enhanced apoptosis. Although reactive oxygen species (ROS) increased in response to TA, this did not seem to play a pivotal role in the apoptotic process since different anti-oxidants were unable to provide cell protection. The present study demonstrates that TA-induced cell death is mediated by an intrinsic-dependent apoptotic event involving mitochondria and MAPK, and through a mechanism independent of ROS generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kroemer G, El-Deiry WS, Golstein P et al (2005) Nomenclature committee on cell death. Classification of cell death: recommendations of the nomenclature committee on cell death. Cell Death Differ 12:1463–1467

    Article  PubMed  CAS  Google Scholar 

  2. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316

    Article  PubMed  CAS  Google Scholar 

  3. Boatright KM, Salvesen GS (2003) Mechanisms of caspase activation. Curr Opin Cell Biol 15:725–731

    Article  PubMed  CAS  Google Scholar 

  4. Nagata S (1997) Apoptosis by death factor. Cell 88:355–365

    Article  PubMed  CAS  Google Scholar 

  5. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275:1132–1136

    Article  PubMed  CAS  Google Scholar 

  6. Yang J, Liu X, Bhalla K et al (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129–1132

    Article  PubMed  CAS  Google Scholar 

  7. Essmann F, Engels IH, Totzke G, Schulze-Osthoff K, Jänicke RU (2004) Apoptosis resistance of MCF-7 breast carcinoma cells to ionizing radiation is independent of p53 and cell cycle control but caused by the lack of caspase-3 and a caffeine-inhibitable event. Cancer Res 64:7065–7072

    Article  PubMed  CAS  Google Scholar 

  8. Cross TG, Scheel-Toellner D, Henriquez NV, Deacon E, Salmon M, Lord JM (2000) Serine/threonine protein kinases and apoptosis. Exp Cell Res 256:34–41

    Article  PubMed  CAS  Google Scholar 

  9. Kang C-D, Yoo S-D, Hwang B-W et al (2000) The inhibition of ERK/MAPK not the activation of JNK/SAPK is primarily required to induce apoptosis in chronic myelogenous leukemic K562 cells. Leuk Res 24:527–534

    Article  PubMed  CAS  Google Scholar 

  10. Middleton E, Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 52:673–751

    PubMed  CAS  Google Scholar 

  11. Havsteen BH (2002) The biochemistry and medical significance of the flavonoids. Pharmacol Therapeut 96:67–202

    Article  CAS  Google Scholar 

  12. Ren W, Qiao Z, Wang H, Zhu L, Zhang L (2003) Flavonoids: promising anticancer agents. Med Res Rev 23:519–534

    Article  PubMed  CAS  Google Scholar 

  13. Díaz JG, Carmona AJ, Torres F, Quintana J, Estévez F, Herz W (2008) Cytotoxic activities of flavonoid glycoside acetates from Consolida oliveriana. Planta Med 74:171–174

    Article  PubMed  Google Scholar 

  14. Paris C, Bertoglio J, Bréard J (2007) Lysosomal and mitochondrial pathways in miltefosine-induced apoptosis in U937 cells. Apoptosis 12:1257–1267

    Article  PubMed  CAS  Google Scholar 

  15. Rubio S, Quintana J, López M, Eiroa JL, Triana J, Estévez F (2006) Phenylbenzopyrones structure-activity studies identify betuletol derivatives as potential antitumoral agents. Eur J Pharmacol 548:9–20

    Article  PubMed  CAS  Google Scholar 

  16. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  17. Susin SA, Lorenzo HK, Zamzami N et al (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446

    Article  PubMed  CAS  Google Scholar 

  18. Jarvis WD, Fornari FA Jr, Tombes RM et al (1998) Evidence for involvement of mitogen-activated protein kinase, rather than stress-activated protein kinase, in potentiation of 1-beta-d-arabinofuranosylcytosine-induced apoptosis by interruption of protein kinase C signaling. Mol Pharmacol 54:844–856

    PubMed  CAS  Google Scholar 

  19. Yu C, Wang S, Dent P, Grant S (2001) Sequence-dependent potentiation of paclitaxel-mediated apoptosis in human leukemia cells by inhibitors of the mitogen-activated protein kinase kinase/mitogen-activated protein kinase pathway. Mol Pharmacol 60:143–154

    PubMed  CAS  Google Scholar 

  20. Rubio S, Quintana J, Eiroa JL, Triana J, Estévez F (2007) Acetyl derivative of quercetin 3-methyl ether-induced cell death in human leukemia cells is amplified by the inhibition of ERK. Carcinogenesis 28:2105–2013

    Article  PubMed  CAS  Google Scholar 

  21. Laurent G, Jaffrézou JP (2001) Signaling pathways activated by daunorubicin. Blood 98:913–924

    Article  PubMed  CAS  Google Scholar 

  22. Yu R, Shtil AA, Tan TH, Roninson IB, Kong AN (1996) Adriamycin activates c-jun N-terminal kinase in human leukaemia cells: a relevance to apoptosis. Cancer Lett 107:73–81

    Article  PubMed  CAS  Google Scholar 

  23. Chen YR, Wang W, Kong AN, Tan TH (1998) Molecular mechanisms of c-Jun N-terminal kinase-mediated apoptosis induced by anticarcinogenic isothiocyanates. J Biol Chem 273:1769–1775

    Article  PubMed  CAS  Google Scholar 

  24. Shiah SG, Chuang SE, Chau YP, Shen SC, Kuo ML (1999) Activation of c-Jun NH2-terminal kinase and subsequent CPP32/Yama during topoisomerase inhibitor β-lapachone-induced apoptosis through an oxidation-dependent pathway. Cancer Res 59:391–398

    PubMed  CAS  Google Scholar 

  25. Watabe M, Kakeya H, Osada H (1999) Requirement of protein kinase (Krs/MST) activation for MT-21-induced apoptosis. Oncogene 18:5211–5220

    Article  PubMed  CAS  Google Scholar 

  26. Zhuang S, Demirs JT, Kochevar IE (2000) p38 mitogen-activated protein kinase mediates bid cleavage, mitochondrial dysfunction, and caspase-3 activation during apoptosis induced by singlet oxygen but not by hydrogen peroxide. J Biol Chem 275:25939–25948

    Article  PubMed  CAS  Google Scholar 

  27. Lee K-H (1999) Novel antitumor agents from higher plants. Med Res Rev 19:569–596

    Article  PubMed  CAS  Google Scholar 

  28. Lassus P, Opitz-Araya X, Lazebnik Y (2002) Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 297:1352–1354

    Article  PubMed  CAS  Google Scholar 

  29. Guo Y, Srinivasula SM, Druilhe A, Fernandes-Alnemri T, Alnemri ES (2002) Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. J Biol Chem 277:13430–13437

    Article  PubMed  CAS  Google Scholar 

  30. Robertson JD, Enoksson M, Suomela M, Zhivotovsky B, Orrenius S (2002) Caspase-2 acts upstream of mitochondria to promote cytochrome c release during etoposide-induced apoptosis. J Biol Chem 277:29803–29809

    Article  PubMed  CAS  Google Scholar 

  31. Zhivotovsky B, Samali A, Gahm A, Orrenius S (1999) Caspases: their intracellular localization and translocation during apoptosis. Cell Death Differ 6:644–651

    Article  PubMed  CAS  Google Scholar 

  32. Bernhard D, Tinhofer I, Tonko M et al (2000) Resveratrol causes arrest in the S-phase prior to Fas-independent apoptosis in CEM-C7H2 acute leukemia cells. Cell Death Differ 7:834–842

    Article  PubMed  CAS  Google Scholar 

  33. Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Alnemri ES (1998) Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol Cell 1:949–957

    Article  PubMed  CAS  Google Scholar 

  34. Slee EA, Harte MT, Kluck RM et al (1999) Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol 144:281–292

    Article  PubMed  CAS  Google Scholar 

  35. Scoltock AB, Cidlowski JA (2004) Activation of intrinsic and extrinsic pathways in apoptotic signaling during UV-C-induced death of Jurkat cells: the role of caspase inhibition. Exp Cell Res 297:212–223

    Article  PubMed  CAS  Google Scholar 

  36. Milleron RS, Bratton SB (2006) Heat shock induces apoptosis independently of any known initiator caspase-activating complex. J Biol Chem 281:16991–17000

    Article  PubMed  CAS  Google Scholar 

  37. Gracie JA, Robertson SE, McInnes IB (2003) Interleukin-18. J Leukoc Biol 73:213–224

    Article  PubMed  CAS  Google Scholar 

  38. Miura M, Zhu H, Rotello R, Hartwieg EA, Yuan J (1993) Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75:653–660

    Article  PubMed  CAS  Google Scholar 

  39. Friedlander RM (2003) Apoptosis and caspases in neurodegenerative diseases. N Engl J Med 348:1365–1375

    Article  PubMed  CAS  Google Scholar 

  40. Saleh M (2006) Caspase-1 builds a new barrier to infection. Cell 126:1028–1030

    Article  PubMed  CAS  Google Scholar 

  41. Guo H, Pétrin D, Zhang Y, Bergeron C, Goodyer CG, LeBlanc AC (2006) Caspase-1 activation of caspase-6 in human apoptotic neurons. Cell Death Differ 13:285–292

    Article  PubMed  CAS  Google Scholar 

  42. Gurcel L, Abrami L, Girardin S, Tschopp J, van der Goot FG (2006) Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell 126:1135–1145

    Article  PubMed  CAS  Google Scholar 

  43. Virág L, Szabó C (2002) The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev 54:375–429

    Article  PubMed  Google Scholar 

  44. Oliver FJ, de la Rubia G, Rolli V, Ruiz-Ruiz MC, de Murcia G, Murcia JM (1998) Importance of poly(ADP-ribose) polymerase and its cleavage in apoptosis. Lesson from an uncleavable mutant. J Biol Chem 273:33533–33539

    Article  PubMed  CAS  Google Scholar 

  45. Nicholson DW, Thornberry NA (1997) Caspases: killer proteases. Trends Biochem Sci 22:299–306

    Article  PubMed  CAS  Google Scholar 

  46. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629

    Article  PubMed  CAS  Google Scholar 

  47. Danial NK, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219

    Article  PubMed  CAS  Google Scholar 

  48. Goldstein JC, Muñoz-Pinedo C, Ricci J-E et al (2005) Cytochrome c is released in a single step during apoptosis. Cell Death Differ 12:453–462

    Article  PubMed  CAS  Google Scholar 

  49. Green DR, Evan GI (2002) A matter of life and death. Cancer Cell 1:19–30

    Article  PubMed  CAS  Google Scholar 

  50. Platanias LC (2003) Map kinase signaling pathways and hematologic malignancies. Blood 101:4667–4679

    Article  PubMed  CAS  Google Scholar 

  51. Rovida E, Gozzini A, Barbetti V, Giuntoli S, Santini V, Dello Sbarba P (2006) The c-Jun-N-terminal-Kinase inhibitor SP600125 enhances the butyrate derivative D1-induced apoptosis via caspase 8 activation in Kasumi 1 t(8;21) acute myeloid leukaemia cells. Br J Haematol 135:653–659

    Article  PubMed  CAS  Google Scholar 

  52. Kuntzen C, Sonuc N, De Toni EN et al (2005) Inhibition of c-Jun-N-terminal-kinase sensitizes tumor cells to CD95-induced apoptosis and induces G2/M cell cycle arrest. Cancer Res 65:6780–6788

    Article  PubMed  CAS  Google Scholar 

  53. Xia HH, He H, De Wang J et al (2006) Induction of apoptosis and cell cycle arrest by a specific c-Jun NH2-terminal kinase (JNK) inhibitor, SP-600125, in gastrointestinal cancers. Cancer Lett 241:268–274

    Article  PubMed  CAS  Google Scholar 

  54. Zarubin T, Han J (2005) Activation and signaling of the p38 MAP kinase pathway. Cell Res 15:11–18

    Article  PubMed  CAS  Google Scholar 

  55. Galán A, García-Bermejo ML, Troyano A et al (2000) Stimulation of p38 mitogen-activated protein kinase is an early regulatory event for the cadmium-induced apoptosis in human promonocytic cells. J Biol Chem 275:11418–11424

    Article  PubMed  Google Scholar 

  56. Rockwell P, Martinez J, Papa L, Gomes E (2004) Redox regulates COX-2 upregulation and cell death in the neuronal response to cadmium. Cell Signal 16:343–353

    Article  PubMed  CAS  Google Scholar 

  57. Kummer JL, Rao PK, Heidenreich KA (1997) Apoptosis induced by withdrawal of trophic factors is mediated by p38 mitogen-activated protein kinase. J Biol Chem 272:20490–20494

    Article  PubMed  CAS  Google Scholar 

  58. Mackay K, Mochly-Rosen D (1999) An inhibitor of p38 mitogen-activated protein kinase protects neonatal cardiac myocytes from ischemia. J Biol Chem 274:6272–6279

    Article  PubMed  CAS  Google Scholar 

  59. Franklin CC, Srikanth S, Kraft AS (1998) Conditional expression of mitogen-activated protein kinase phosphatase-1, MKP-1, is cytoprotective against UV-induced apoptosis. Proc Natl Acad Sci USA 95:3014–3019

    Article  PubMed  CAS  Google Scholar 

  60. Callsen D, Brüne B (1999) Role of mitogen-activated protein kinases in S-nitrosoglutathione-induced macrophage apoptosis. Biochemistry 38:2279–2286

    Article  PubMed  CAS  Google Scholar 

  61. Juo P, Kuo CJ, Reynolds SE et al (1997) Fas activation of the p38 mitogen-activated protein kinase signalling pathway requires ICE/CED-3 family proteases. Mol Cell Biol 17:24–35

    PubMed  CAS  Google Scholar 

  62. Nguyen TTT, Tran E, Nguyen TH, Do PT, Huynh TH, Huynh H (2004) The role of activated MEK-ERK pathway in quercetin-induced growth inhibition and apoptosis in A549 lung cancer cells. Carcinogenesis 25:647–659

    Article  PubMed  CAS  Google Scholar 

  63. Yeh PY, Chuang SE, Yeh KH, Song YC, Ea CK, Cheng AL (2002) Increase of the resistance of human cervical carcinoma cells to cisplatin by inhibition of the MEK to ERK signaling pathway partly via enhancement of anticancer drug-induced NF kappa B activation. Biochem Pharmacol 63:1423–1430

    Article  PubMed  CAS  Google Scholar 

  64. Tanel A, Averill-Bates DA (2007) P38 and ERK mitogen-activated protein kinases mediate acrolein-induced apoptosis in Chinese hamster ovary cells. Cell Signal 19:968–977

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Angelika Vollmar and Dr. Jacqueline Bréard for supplying HL-60/neo, HL-60/Bcl-xL and U937/Bcl-2 cells, respectively. We thank J. Estévez (Hospital Universitario Insular de Gran Canaria) for his collaboration in the Western blot assays. This work was supported by a Grant from the Ministry of Education and Science of Spain and from the European Regional Development Fund (SAF2004-07928) to FE. FT was supported by a research studentship from the Canary Islands Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Estévez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torres, F., Quintana, J., Díaz, J.G. et al. Trifolin acetate-induced cell death in human leukemia cells is dependent on caspase-6 and activates the MAPK pathway. Apoptosis 13, 716–728 (2008). https://doi.org/10.1007/s10495-008-0202-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-008-0202-0

Keywords

Navigation