Skip to main content
Log in

Role of Bcl-2 family members in caspase-3/9-dependent apoptosis during Pseudomonas aeruginosa infection in U937 cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa is a gram-negative opportunistic pathogen that is cytotoxic towards a variety of eukaryotic cells. To investigate the effect of this bacterium on monocyte, we infected human U937 cells with the P. aeruginosa strain in vitro. To explore the expression of Bcl-2 and Bax as well as caspase-3/9 activation in the apoptosis of human U937 cells induced by P. aeruginosa, Hoechst 33258 staining and Giemsa staining as well as Flow cytometry analysis were used to determine the rate of apoptosis, and the expressions of Bcl-2 and Bax were assayed by RT-PCR and Western blotting respectively. Bax protein conformation change was assayed by immunoprecipitation. Cytochrome c release was measured by Western blotting. Moreover, exposure of U937 cells to P. aeruginosa measured caspase-3/9 activity. It was found that the apoptosis of human U937 cells could be induced by Pseudomonas aeruginosa in a dose- and time-dependent manner. Also, there were a tendency of alterations with an increased expression level of Bax and a reduced expression level of Bcl-2, increased levels of cytochrome c release, and also with an increased activation of caspase-3/9 and Bax protein conformation change. For the evaluation of the role of caspases, caspase-3/9 inhibitors Z-DEVD-FMK and Z-LEHD-FMK respectively were used. The results were further confirmed by the observation that the caspase inhibitors Z-DEVD-FMK and Z-LEHD-FMK blocked P. aeruginosa-induced U937 apoptosis. It is concluded that P. aeruginosa can induce apoptosis with an up-regulated expression of Bax and a down-regulated expression of Bcl-2, which resulted in increased levels of cytochrome c release and increased caspase-3 and -9 in human U937 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Richards MJ, Edwards JR, Culver DH, Gaynes RP (1999) Nosocomial infections in medical intensive care units in the United States. Crit Care Med 27:887–892

    Article  PubMed  CAS  Google Scholar 

  2. Hoiby N (1994) Diffuse panbronchiolitis and cystic fibrosis: east meets west. Thorax 49:531–532

    Article  PubMed  CAS  Google Scholar 

  3. Wilson R, Dowling RB (1998) Lung infections. Pseudomonas aeruginosa and other related species. Thorax 53:213–219

    Article  PubMed  CAS  Google Scholar 

  4. Wood RE (1976) Pseudomonas: the compromised host. Hosp Pract 11:91–100

    PubMed  CAS  Google Scholar 

  5. Horwitz MA (1992) Interactions between macrophages and Legionella pneumophila. Curr Top Microbiol Immunol 18:265–282

    Google Scholar 

  6. Wang H, Zhou YJ, He P, Chen BY (2007) Roles of mitogen-activated protein kinase pathways during Escherichia coli-induced apoptosis in U937 cells. Apoptosis 12:375–385

    Article  PubMed  CAS  Google Scholar 

  7. Zychlinsky A, Sansonetti P (1997) Perspectives series: host/pathogen interactions Apoptosis in bacterial pathogenesis. J Clin Invest 100:493–495

    Article  PubMed  CAS  Google Scholar 

  8. Baran J, Guzik K, Hryniewicz W, Ernst M, Flad H-D, Pryjma J (1996) Apoptosis of monocytes and prolonged survival of granulocytes as a result of phagocytosis of bacteria. Infect Immun 64(10):4242–4248

    PubMed  CAS  Google Scholar 

  9. Jenkins CE, Swiatoniowski A, Issekutz AC, Lin TJ (2004) Pseudomonas aeruginosa exotoxin A induces human mast cell apoptosis by a caspase-8 and -3-dependent mechanism. J Biol Chem 279(35):37201–37207

    Article  PubMed  CAS  Google Scholar 

  10. Usher LR, Lawson RA, Geary I, Taylor CJ, Bingle CD, Taylor GW, Whyte MK (2002) Induction of neutrophil apoptosis by the Pseudomonas aeruginosa exotoxin pyocyanin: a potential mechanism of persistent infection. J Immunol 168:1861–1868

    PubMed  CAS  Google Scholar 

  11. Kaufman MR, Jia J, Zeng L, Ha U, Chow M, Jin S (2000) Pseudomonas aeruginosa mediated apoptosis requires the ADP-ribosylating activity of exoS. Microbiology 146:2531–2541

    PubMed  CAS  Google Scholar 

  12. Buommino E, Morelli F, Metafora S, Rossano F, Perfetto B, Baroni A, Tufano MA (1999) Porin from Pseudomonas aeruginosa induces apoptosis in an epithelial cell line derived from rat seminal vesicles. Infect Immun 67:4794–4800

    PubMed  CAS  Google Scholar 

  13. Tateda K, Ishii Y, Horikawa M et al (2003) The Pseudomonas aeruginosa autoinducer N-3-oxododecanoyl homoserine lactone accelerates apoptosis in macrophages and neutrophils. Infect Immun 71(10):5785–5793

    Article  PubMed  CAS  Google Scholar 

  14. Hauser AR, Engel JN (1999) Pseudomonas aeruginosa induces type-III-secretion-mediated apoptosis of macrophages and epithelial cells. Infect Immun 67:5530–5537

    PubMed  CAS  Google Scholar 

  15. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    Article  PubMed  CAS  Google Scholar 

  16. Los M, Wesselborg S, Schulze-Osthoff K (1999) The role of caspases in development, immunity, and apoptotic signal transduction: lessons from knockout mice. Immunity 10:629–639

    Article  PubMed  CAS  Google Scholar 

  17. Salvesen GS, Dixit VM (1997) Caspases: intracellular signaling by proteolysis. Cell 91:443–446

    Article  PubMed  CAS  Google Scholar 

  18. Rossé T, Olivier R, Monney L, Rager M, Conus S, Fellay I, Jansen B, Borner C (1998) Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature 391:496–499

    Article  PubMed  Google Scholar 

  19. Shimizu S, Narita M, Tsujimoto Y (1999) Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399:483–487

    Article  PubMed  CAS  Google Scholar 

  20. Kenichi S, Taro H, Chikahiko S et al (2001) Cleavage of mitogen activated protein kinases in human neutrophils undergoing apoptosis: role in decreased responsiveness to inflammatory cytokines. J Immunol 166:1185–1192

    Google Scholar 

  21. Nasrin P, Min L, Olie S et al (2002) Mycobacterium tuberculosis promotes apoptosis in human neutrophils by activating caspase-3 and altering expression of Bax/Bcl-xL via an oxygen-dependent pathway. J Immunol 168(5):6358–6365

    Google Scholar 

  22. Autret A, Martin-Latil S, Mousson L, et al (2007) Poliovirus induces Bax-dependent cell death mediated by c-Jun NH2-terminal kinase. J Virol 81(14):7504–7516

    Google Scholar 

  23. Wolter KG, Hsu YT, Smith CL, et al (1997) Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol 139(5):1281–1292

    Google Scholar 

  24. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  PubMed  CAS  Google Scholar 

  25. Kroemer G, Dallaporta B, Resche-Rigon M (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60:619–642

    Article  PubMed  CAS  Google Scholar 

  26. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    Article  PubMed  CAS  Google Scholar 

  27. Lawrence GG (1992) New pathways of phagocyte activation: the coupling of receptor-linked phospholipase D and the role of tyrosine kinase in primed neutrophils. FEMS Microbiol Immunol 105:229–238

    Article  Google Scholar 

  28. Morel F, Doussiere J, Vignais PV (1991) The superoxide generating oxidase of phagocytic cells. Physiological, molecular and pathological aspects. Eur J Biochem 201:523–546

    Article  PubMed  CAS  Google Scholar 

  29. Monack DM, Mecsas J, Ghori N, Falkow S (1997) Yersinia signals macrophages to undergo apoptosis and YopJ is necessary for this cell death. Proc Natl Acad Sci USA 94:10385–10390

    Article  PubMed  CAS  Google Scholar 

  30. Crane JK, Majumdar S, Pickhardt DF (1999) Host cell death due to enteropathogenic Escherichia coli has features of apoptosis. Infect Immun 67:2575–2584

    PubMed  CAS  Google Scholar 

  31. Menzies BE, Kourteva I (1998) Internalization of Staphylococcus aureus by endothelial cells induces apoptosis. Infect Immun 66:5994–5998

    PubMed  CAS  Google Scholar 

  32. Hersh D, Monack DM, Smith MR, Ghori N, Falkow S, Zychlinski A (1999) The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc Natl Acad Sci USA 96:2396–2401

    Article  PubMed  CAS  Google Scholar 

  33. Zychlinsky A, Prevost MC, Sansonetti PJ (1992) Shigella flexneri induces apoptosis in infected macrophages. Nature 358:167–169

    Article  PubMed  CAS  Google Scholar 

  34. Rogers HW, Callery MP, Deck B, Unanue ER (1996) Listeria monocytogenes induces apoptosis of infected hepatocytes. J Immunol 156:679–684

    PubMed  CAS  Google Scholar 

  35. Coopersmith CM, Stromberg PE, Dunne WM, Davis CG, Amiot DM II, Buchman TG, Karl IE, Hotchkiss RS (2002) Inhibition of intestinal epithelial apoptosis and survival in a murine model of pneumonia induced sepsis. JAMA 287:1716–1721

    Article  PubMed  Google Scholar 

  36. Epelman S, Neely GG, Ma LL, Gjomarkaj M, Pace E, Melis M, Woods DE, Mody CH (2002) Distinct fates of monocytes and T cells directly activated by Pseudomonas aeruginosa exoenzyme S. J Leukoc Biol 71:458–468

    PubMed  CAS  Google Scholar 

  37. Grassmé H, Kirschnek S, Riethmueller J, Riehle A, von Kürthy G, Lang F, Weller M, Gulbins E (2000) CD95/CD95 ligand interactions on epithelial cells in host defense to Pseudomonas aeruginosa. Science 290(5491):527–530

    Article  PubMed  Google Scholar 

  38. Jendrossek V, Fillon S, Belka C, Muller I, Puttkammer B, Lang F (2003) Apoptotic response of Chang cells to infection with Pseudomonas aeruginosa strains PAK and PAO-I: molecular ordering of the apoptosis signaling cascade and role of type IV pili. Infect Immun 71:2665–2673

    Article  PubMed  CAS  Google Scholar 

  39. Rajan S, Cacalano G, Bryan R, Ratner AJ, Sontich CU, van Heerckeren A, Davis P, Prince A (2000) Pseudomonas aeruginosa induction of apoptosis in respiratory epithelial cells: analysis of the effects of cystic fibrosis transmembrane conductance regulator dysfunction and bacterial virulence factors. Am J Respir Cell Mol Biol 23:304–312

    PubMed  CAS  Google Scholar 

  40. Watt AP, Courtney J, Moore J, Ennis M, Elborn JS (2005) Neutrophil cell death, activation, and bacterial infection in cystic fibrosis. Thorax 60:659–664

    Article  PubMed  CAS  Google Scholar 

  41. Jia J, Wang Y, Zhou L, Jin S (2006) Expression of Pseudomonas aeruginosa toxin ExoS effectively induces apoptosis in host cells. Infect Immun 74(12):6557–6570

    Article  PubMed  CAS  Google Scholar 

  42. Allen L, Dockrell DH, Pattery T, Lee DG, Cornelis P, Hellewell PG, Whyte MK (2005) Pyocyanin production by Pseudomonas aeruginosa induces neutrophil apoptosis and impairs neutrophil-mediated host defenses in vivo. J Immunol 174:3643–3649

    PubMed  CAS  Google Scholar 

  43. Bruno TF, Woods DE, Mody CH (2000) Exoenzyme S from Pseudomonas aeruginosa induces apoptosis in T lymphocytes. J Leukoc Biol 67:808–816

    PubMed  CAS  Google Scholar 

  44. Goto M, Yamada T, Kimbara K, Horner J, Newcomb M, Gupta TKD, Chakrabarty AM (2003) Induction of apoptosis in macrophages by Pseudomonas aeruginosa azurin: tumour-suppressor protein p53 and reactive oxygen species, but not redox activity, as critical elements in cytotoxicity. Mol Microbiol 47:549–559

    Article  PubMed  CAS  Google Scholar 

  45. Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157

    Article  PubMed  CAS  Google Scholar 

  46. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90:405–413

    Article  PubMed  CAS  Google Scholar 

  47. Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326

    Article  PubMed  CAS  Google Scholar 

  48. Cosulich SC, Savory PJ, Clarke PR (1999) Bcl-2 regulates amplification of caspase activation by cytochrome c. Curr Biol 9:147–150

    Article  PubMed  CAS  Google Scholar 

  49. Okuno S, Shimizu S, Ito T, Nomura M, Hamada E, Tsujimoto Y, Matsuda H (1998) Bcl-2 prevents caspase-independent cell death. J Biol Chem 273:34272–34277

    Article  PubMed  CAS  Google Scholar 

  50. Monney L, Otter I, Olivier R, Ozer HL, Haas AL, Omura S, Borner C (1998) Defects in the ubiquitin pathway induce caspase-independent apoptosis blocked by Bcl-2. J Biol Chem 273:6121–6131

    Article  PubMed  CAS  Google Scholar 

  51. Jendrossek V, Grassmé H, Mueller I, Lang F, Gulbins E (2001) Pseudomonas aeruginosa-induced apoptosis involves mitochondria and stress-activated protein kinases. Infect Immun 69(4):2675–2683

    Article  PubMed  CAS  Google Scholar 

  52. Bhattacharyya A, Pathak S, Basak C, Law S, Kundu M, Basu J (2003) Execution of macrophage apoptosis by Mycobacterium avium through apoptosis signal-regulating kinase 1/p38 mitogen activated protein kinase signaling and caspase 8 activation. J Biol Chem 278:26571–26525

    Article  CAS  Google Scholar 

  53. Jenkins CE, Swiatoniowski A, Power MR, Lin TJ (2006) Pseudomonas aeruginosa-induced human mast cell apoptosis is associated with up-regulation of endogenous Bcl-xS and down-regulation of Bcl-xL. J Immunol 177(11):8000–8007

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Y. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chai, W.S., Zhu, X.M., Li, S.H. et al. Role of Bcl-2 family members in caspase-3/9-dependent apoptosis during Pseudomonas aeruginosa infection in U937 cells. Apoptosis 13, 833–843 (2008). https://doi.org/10.1007/s10495-008-0197-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-008-0197-6

Keywords

Navigation