Skip to main content
Log in

Celecoxib disrupts the canonical apoptotic network in HTLV-I cells through activation of Bax and inhibition of PKB/Akt

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Adult T-cell leukemia/lymphoma (ATLL) is an aggressive lymphoproliferative disease of very poor clinical prognosis associated with infection by the human T-cell leukemia virus type I (HTLV-I). Treatment of patients with ATLL using conventional chemotherapy has limited benefit because HTLV-I cells are refractory to most apoptosis-inducing agents. In this study, we report that Celecoxib induces cell death via the intrinsic mitochondrial pathway in HTLV-I transformed leukemia cells. Treatment with Celecoxib was associated with activation of Bax, decreased expression of Mcl-1, loss of the mitochondrial membrane potential and caspase-9-dependent apoptosis. These effects were independent from Bcl-2 and Bcl-xL. We also found that Celecoxib inhibited the Akt/GSK3 β survival pathway in HTLV-I cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD, Gallo RC (1980) Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci USA 77:7415–7419

    Article  PubMed  CAS  Google Scholar 

  2. Franchini G, Nicot C, Johnson JM (2003) Seizing of T cells by human T-cell leukemia/lymphoma virus type 1. Adv Cancer Res 89:69–132

    Article  PubMed  CAS  Google Scholar 

  3. Bellon M, Datta A, Brown M et al (2006) Increased expression of telomere length regulating factors TRF1, TRF2 and TIN2 in patients with adult T-cell leukemia. Int J Cancer 119:2090–2097

    Article  PubMed  CAS  Google Scholar 

  4. Sinha-Datta U, Horikawa I, Michishita E et al (2004) Transcriptional activation of hTERT through the NF-κB pathway in HTLV-I-transformed cells. Blood 104:2523–2531

    Article  PubMed  CAS  Google Scholar 

  5. Grassmann R, Aboud M, Jeang KT (2005) Molecular mechanisms of cellular transformation by HTLV-1 Tax. Oncogene 24:5976–5985

    Article  PubMed  CAS  Google Scholar 

  6. Bazarbachi A, Ghez D, Lepelletier Y et al (2004) New therapeutic approaches for adult T-cell leukaemia. Lancet Oncol 5:664–672

    Article  PubMed  CAS  Google Scholar 

  7. Hermine O, Allard I, Levy V, Arnulf B, Gessain A, Bazarbachi A (2002) A prospective phase II clinical trial with the use of zidovudine and interferon-α in the acute and lymphoma forms of adult T-cell leukemia/lymphoma. Hematol J 3:276–282

    Article  PubMed  CAS  Google Scholar 

  8. Datta A, Bellon M, Sinha-Datta U et al (2006) Persistent inhibition of telomerase reprograms adult T-cell leukemia to p53-dependent senescence. Blood 108:1021–1029

    Article  PubMed  CAS  Google Scholar 

  9. Bazarbachi A, Hermine O (2001) Treatment of adult T-cell leukaemia/lymphoma: current strategy and future perspectives. Virus Res 78:79–92

    Article  PubMed  CAS  Google Scholar 

  10. Nicot C, Mahieux R, Takemoto S, Franchini G (2000) Bcl-X(L) is up-regulated by HTLV-I and HTLV-II in vitro and in ex vivo ATLL samples. Blood 96:275–281

    PubMed  CAS  Google Scholar 

  11. Hwang D, Scollard D, Byrne J, Levine E (1998) Expression of cyclooxygenase-1 and cyclooxygenase-2 in human breast cancer. J Natl Cancer Inst 90:455–460

    Article  PubMed  CAS  Google Scholar 

  12. Soslow RA, Dannenberg AJ, Rush D et al (2000) COX-2 is expressed in human pulmonary, colonic, and mammary tumors. Cancer 89:2637–2645

    Article  PubMed  CAS  Google Scholar 

  13. Mori N, Inoue H, Yoshida T, Tanabe T, Yamamoto N (2001) Constitutive expression of the cyclooxygenase-2 gene in T-cell lines infected with human T cell leukemia virus type I. Int J Cancer 94:813–819

    Article  PubMed  CAS  Google Scholar 

  14. Steinbach G, Lynch PM, Phillips RK et al (2000) The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med 342:1946–1952

    Article  PubMed  CAS  Google Scholar 

  15. Elder DJ, Paraskeva C (1999) Induced apoptosis in the prevention of colorectal cancer by non-steroidal anti-inflammatory drugs. Apoptosis 4:365–372

    Article  PubMed  CAS  Google Scholar 

  16. Elder DJ, Paraskeva C (1998) COX-2 inhibitors for colorectal cancer. Nat Med 4:392–393

    Article  PubMed  CAS  Google Scholar 

  17. Jendrossek V, Handrick R, Belka C (2003) Celecoxib activates a novel mitochondrial apoptosis signaling pathway. FASEB J 17:1547–1549

    PubMed  CAS  Google Scholar 

  18. Brown M, Bellon M, Nicot C (2007) Emodin and DHA potently increase arsenic trioxide interferon-alpha-induced cell death of HTLV-I-transformed cells by generation of reactive oxygen species and inhibition of Akt and AP-1. Blood 109:1653–1659

    Article  PubMed  CAS  Google Scholar 

  19. Jendrossek V, Handrick R, Belka C (2003) Celecoxib activates a novel mitochondrial apoptosis signaling pathway. FASEB J 17:1547–1549

    PubMed  CAS  Google Scholar 

  20. Kim H, Rafiuddin-Shah M, Tu HC et al (2006) Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nat Cell Biol 8:1348–1358

    Article  PubMed  CAS  Google Scholar 

  21. Hsu YT, Youle RJ (1998) Bax in murine thymus is a soluble monomeric protein that displays differential detergent-induced conformations. J Biol Chem 273:10777–10783

    Article  PubMed  CAS  Google Scholar 

  22. Hsu YT, Youle RJ (1997) Nonionic detergents induce dimerization among members of the Bcl-2 family. J Biol Chem 272:13829–13834

    Article  PubMed  CAS  Google Scholar 

  23. Toker A, Yoeli-Lerner M (2006) Akt signaling and cancer: surviving but not moving on. Cancer Res 66:3963–3966

    Article  PubMed  CAS  Google Scholar 

  24. Datta SR, Brunet A, Greenberg ME (1999) Cellular survival: a play in three Akts. Genes Dev 13:2905–2927

    Article  PubMed  CAS  Google Scholar 

  25. Jeong SJ, Pise-Masison CA, Radonovich MF, Park HU, Brady JN (2005) Activated AKT regulates NF-kappaB activation, p53 inhibition and cell survival in HTLV-1-transformed cells. Oncogene 24:6719–6728

    Article  PubMed  CAS  Google Scholar 

  26. Liu Y, Wang Y, Yamakuchi M et al (2001) Phosphoinositide-3 kinase-PKB/Akt pathway activation is involved in fibroblast Rat-1 transformation by human T-cell leukemia virus type I tax. Oncogene 20:2514–2526

    Article  PubMed  CAS  Google Scholar 

  27. Tomita M, Kikuchi A, Akiyama T, Tanaka Y, Mori N (2006) Human T-cell leukemia virus type 1 tax dysregulates β-catenin signaling. J Virol 80:10497–10505

    Article  PubMed  CAS  Google Scholar 

  28. Datta A, Sinha-Datta U, Dhillon NK, Buch S, Nicot C (2006) The HTLV-I p30 interferes with TLR4 signaling and modulates the release of pro- and anti-inflammatory cytokines from human macrophages. J .Biol Chem 281:23414–23424

    Article  PubMed  CAS  Google Scholar 

  29. Han J, Goldstein LA, Gastman BR, Rabinovitz A, Rabinowich H (2005) Disruption of Mcl-1.Bim complex in granzyme B-mediated mitochondrial apoptosis. J Biol Chem 280:16383–16392

    Article  PubMed  CAS  Google Scholar 

  30. Willis SN, Chen L, Dewson G et al (2005) Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev 19:1294–1305

    Article  PubMed  CAS  Google Scholar 

  31. Kern MA, Haugg AM, Koch AF et al (2006) Cyclooxygenase-2 inhibition induces apoptosis signaling via death receptors and mitochondria in hepatocellular carcinoma. Cancer Res 66:7059–7066

    Article  PubMed  CAS  Google Scholar 

  32. Cuconati A, Mukherjee C, Perez D, White E (2003) DNA damage response and MCL-1 destruction initiate apoptosis in adenovirus-infected cells. Genes Dev 17:2922–2932

    Article  PubMed  CAS  Google Scholar 

  33. Gradilone A, Silvestri I, Scarpa S et al (2007) Failure of apoptosis and activation on NFkappaB by celecoxib and aspirin in lung cancer cell lines. Oncol Rep 17:823–828

    PubMed  CAS  Google Scholar 

  34. Pang RP, Zhou JG, Zeng ZR et al (2007) Celecoxib induces apoptosis in COX-2 deficient human gastric cancer cells through Akt/GSK3β/NAG-1 pathway. Cancer Lett 251:268–277

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Cancer Institute grant CA106258 to C.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Nicot.

Additional information

U. Sinha-Datta and J. M. Taylor have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinha-Datta, U., Taylor, J.M., Brown, M. et al. Celecoxib disrupts the canonical apoptotic network in HTLV-I cells through activation of Bax and inhibition of PKB/Akt. Apoptosis 13, 33–40 (2008). https://doi.org/10.1007/s10495-007-0148-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-007-0148-7

Keywords

Navigation