Skip to main content
Log in

The CD44 standard/ezrin complex regulates Fas-mediated apoptosis in Jurkat cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The transmembrane receptor CD44 conveys important signals from the extracellular microenvironment to the cytoplasm, a phenomena known as “outside-in” signaling. CD44 exists as several isoforms that result from alternative splicing, which differ only in the extracellular domain but yet exhibit different activities. CD44 is a binding partner for the membrane-cytoskeleton cross-linker protein ezrin. In this study, we demonstrate that only CD44 standard (CD44s) colocalizes and interacts with the actin cross-linkers ezrin and moesin using well-characterized cell lines engineered to express different CD44 isoforms. Importantly, we also show that the association CD44s-ezrin-actin is an important modulator of Fas-mediated apoptosis. The results highlight a mechanism by which signals from the extracellular milieu regulate intracellular signaling activities involved in programmed cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fujita Y, Kitagawa M, Nakamura S et al (2002) CD44 signaling through focal adhesion kinase and its anti-apoptotic effect. FEBS Lett 528:101–108

    Article  PubMed  CAS  Google Scholar 

  2. Föger N, Marhaba R, Zöller M (2000) CD44 supports T cell proliferation and apoptosis by apposition of protein kinases. Eur J Immunol 10:2888–2899

    Article  Google Scholar 

  3. Föger N, Marhaba R, Zöller M (2001) Involvement of CD44 in cytoskeleton rearrangement and raft reorganization in T cells. J Cell Sci 114:1169–1178

    PubMed  Google Scholar 

  4. Ponta H, Sherman L, Herrlich PA (2003) CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 4:33–45

    Article  PubMed  CAS  Google Scholar 

  5. Lokeshwar VB, Bourguignon LY (1992) The lymphoma transmembrane glycoprotein GP85 (CD44) is a novel guanine nucleotide-binding protein which regulates GP85 (CD44)-ankyrin interaction. J Biol Chem 267:22073–22078

    PubMed  CAS  Google Scholar 

  6. Oliferenko S, Paiha K, Harder T et al (1999) Analysis of CD44 containing lipid rafts: recruitment of annexin II and stabilization by the actin cytoskeleton. J Cell Biol 146:843–854

    Article  PubMed  CAS  Google Scholar 

  7. Legg JW, Isacke CM (1998) Identification and functional analysis of the ezrin-binding site in the hyaluronan receptor, CD44. Curr Biol 8:705–708

    Article  PubMed  CAS  Google Scholar 

  8. Tsukita S, Oishi K, Sato N, Sagara J, Kawai A (1994) ERM family members as molecular linkers between the cell surface glycoprotein CD44 and actin-based cytoskeletons. J Cell Biol 126:391–401

    Article  PubMed  CAS  Google Scholar 

  9. Yonemura S, Hirao M, Doi Y et al (1998) Ezrin/Radixin/Moesin (ERM) proteins bind to a positively charged amino acid cluster in the juxtamembrane cytoplasmic domain of CD44, CD43, and ICAM-2. J Cell Biol 140:885–895

    Article  PubMed  CAS  Google Scholar 

  10. Thorne RF, Legg JW, Isacke CM (2004) The role of the CD44 transmembrane and cytoplasmic domains in co-ordinating adhesive and signalling events. J Cell Sci 117:373–380

    Article  PubMed  CAS  Google Scholar 

  11. Tsukita S, Yonemura S (1999) Cortical actin organization: lessons from ERM (Ezrin/Radixin/Moesin) proteins. J Biol Chem 274:34507–34510

    Article  PubMed  CAS  Google Scholar 

  12. Bretscher A, Edwards K, Fehon R (2002) ERM proteins and merlin: integrators at the cell cortex. Nat Rev Mol Cell Biol 3:586–599

    Article  PubMed  CAS  Google Scholar 

  13. Suarez-Huerta N, Mosselmans R, Dumont J, Robaye B (2000) Actin depolymerization and polymerization are required during apoptosis in endothelial cells. J Cell Physiol 184:239–245

    Article  PubMed  CAS  Google Scholar 

  14. Subauste M, Von Herrath M, Benard V et al (2000) Rho family proteins modulate rapid apoptosis induced by cytotoxic T lymphocytes and Fas. J Biol Chem 275:9725–9733

    Article  PubMed  CAS  Google Scholar 

  15. Niggli V, Rossy J (2007) Ezrin/ radixin/moesin: Versatile controllers of signaling molecules and of the cortical cytoskeleton. Int J Biochem Cell Biol, doi: 10.1016/j.biocel.2007.02.012

  16. Li Y, Harada T, Juang YT, Kyttaris VC, Wang Y, Zidanic M, Tung K, Tsokos GC (2007) Phosphorylated ERM is responsible for increased T cell polarization, adhesion, and migration in patients with systemic lupus erythematosus. J Immunol 178:1938–1947

    PubMed  CAS  Google Scholar 

  17. Yonemura S, Tsukita S, Tsukita S (1999) Direct involvement of ezrin/radixin/moesin (ERM)-binding membrane proteins in the organization of microvilli in collaboration with activated ERM proteins. J Cell Biol 145:1497–1509

    Article  PubMed  CAS  Google Scholar 

  18. Legg JW, Lewis C, Parsons M, Ng T, Isacke C (2002) A novel PKC-regulated mechanism controls CD44 ezrin association and directional cell motility. Nat Cell Biol 4:399–407

    Article  PubMed  CAS  Google Scholar 

  19. Brown K, Birkenhead D, Lai J, Li L, Li R, Johnson P (2005) Regulation of hyaluronan binding by F-actin and colocalization of CD44 and phosphorylated ezrin/radixin/moesin (ERM) proteins in myeloid cells. Exp Cell Res 303:400–414

    Article  PubMed  CAS  Google Scholar 

  20. Jensen PV, Larsson LI (2004) Actin microdomains on endothelial cells: association with CD44, ERM proteins, and signaling molecules during quiescence and wound healing. Histochem Cell Biol 5:361–369

    Article  Google Scholar 

  21. Orian-Rousseau V, Morrison H, Matzke A, Kastilan T, Pace G, Herrlich P, Ponta H (2007) Hepatocyte growth factor-induced activation requires ERM proteins linked to both CD44v6 and F-actin. Mol Biol Cell 18:76–83

    Article  PubMed  CAS  Google Scholar 

  22. Bai Y, Liu YZ, Wang H, Xu Y, Stamenkovic I, Yu Q (2007) Inhibition of the hyaluronan-CD44 interaction by merlin contributes to the tumor suppressor activity of merlin. Oncogene 26:836–850

    Article  PubMed  CAS  Google Scholar 

  23. Gourlay CW, Ayscough KR (2005) The actin cytoskeleton: a key regulator of apoptosis and ageing? Nat Rev Mol Cell Biol 6:583–589

    Article  PubMed  CAS  Google Scholar 

  24. Kulms D, Dussmann H, Poppelmann B, Stander S, Schwarz A, Schwarz T (2002) Apoptosis induced by disruption of the actin cytoskeleton is mediated via activation of CD95 (Fas/APO-1). Cell Death Differ 9:598–608

    Article  PubMed  CAS  Google Scholar 

  25. Bando M, Miyake Y, Shiina M, Wachi M, Nagai K, Kataoka T (2002) Actin cytoskeleton is required for early apoptosis signaling induced by anti-Fas antibody but not Fas ligand in murine B lymphoma A20 cells. Biochem Biophys Res Commun 290:268–274

    Article  PubMed  CAS  Google Scholar 

  26. Mielgo A, Van Driel M, Bloem A, Landmann L, Günthert U (2006) A novel anti-apoptotic mechanism based on interference of Fas signaling by CD44 variant isoforms. Cell Death Differ 13:465–477

    Article  PubMed  CAS  Google Scholar 

  27. Cooper J (1987) Effects of cytochalasin and phalloidin on actin. J Cell Biol 105:1473–1478

    Article  PubMed  CAS  Google Scholar 

  28. Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C (1991) A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139:271–279

    Article  PubMed  CAS  Google Scholar 

  29. Landmann L (2002) Deconvolution improves colocalization analysis of multiple fluorochromes in 3D confocal data sets more than filtering techniques. J Microsc 208:134–147

    Article  PubMed  CAS  Google Scholar 

  30. Costes SV, Daelemans D, Cho EH, Dobbin Z, Pavlakis G, Lockett S (2004) Automatic and quantitative measurement of protein–protein colocalization in live cells. Biophys J 86(6):3993–4003

    Article  PubMed  CAS  Google Scholar 

  31. Harder T, Kuhn M (2001) Immunoisolation of TCR signaling complexes from Jurkat T leukemic cells. Sci STKE 2007(71):PL1

    Google Scholar 

  32. Stupack DG, Cheresh DA (2002) Get a ligand, get a life: integrins signaling and cell survival. J Cell Sci 115:3729–3738

    Article  PubMed  CAS  Google Scholar 

  33. Miao H, Li S, Hu Y, Yuan S et al (2002) Differential regulation of Rho GTPases by beta1 and beta3 integrins: the role of an extracellular domain of integrin in intracellular signaling. J Cell Sci 115:2199–2206

    PubMed  CAS  Google Scholar 

  34. de Melker A, Sonnenberg A (1999) Integrins: alternative splicing as a mechanism to regulate ligand binding and integrin signaling events. Bioessays 21:499–509

    Article  PubMed  Google Scholar 

  35. Parlato S, Giammarioli A, Logozzi M et al (2000) CD95 (APO-1/Fas) linkage to the actin cytoskeleton through ezrin in human T lymphocytes: a novel regulatory mechanism of the CD95 apoptotic pathway. EMBO J 19:5123–5134

    Article  PubMed  CAS  Google Scholar 

  36. Pujuguet P, Del Maestro L, Gautreau A, Louvard D, Arpin M (2003) Ezrin regulates E-cadherin-dependent adherens junction assembly through Rac1 activation. Mol Biol Cell 14:2181–2191

    Article  PubMed  CAS  Google Scholar 

  37. Roumier A, Olivo-Marin J, Arpin M et al (2001) The membrane-microfilament linker ezrin is involved in the formation of the immunological synapse and in T cell activation. Immunity 15:715–728

    Article  PubMed  CAS  Google Scholar 

  38. Pust S, Morrison H, Wehland J, Sechi A, Herrlich P (2005) Listeria monocytogenes exploits ERM protein functions to efficiently spread from cell to cell. EMBO J 24:1287–1300

    Article  PubMed  CAS  Google Scholar 

  39. Fais S, De Milito A, Lozupone F (2005) The role of Fas to ezrin association in Fas-mediated apoptosis. Apoptosis 10:941–947

    Article  PubMed  CAS  Google Scholar 

  40. Chen D, McKallip R, Zeytun A et al (2001) CD44-deficient mice exhibit enhanced hepatitis after concanavalin A injection: evidence for involvement of CD44 in activation-induced cell death. J Immunol 166:5889–5897

    PubMed  CAS  Google Scholar 

  41. Fujii K, Fujii Y, Hubscher S, Tanaka Y (2001) CD44 is the physiological trigger of Fas up-regulation on rheumatoid synovial cells. J Immunol 167:1198–1203

    PubMed  CAS  Google Scholar 

  42. Guy R, Yefenof E, Naor D, Dorogin A, Zilberman Y (2002) CD44 co-stimulates apoptosis in thymic lymphomas and T cell hybridomas. Cell Immunol 216:82–92

    Article  PubMed  CAS  Google Scholar 

  43. Charrad R, Gadhoum Z, Qi J et al (2002) Effects of anti-CD44 monoclonal antibodies on differentiation and apoptosis of human myeloid leukemia cell lines. Blood 99:290–299

    Article  PubMed  CAS  Google Scholar 

  44. Günthert U, Hofmann M, Rudy W et al (1991) A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 65:13–24

    Article  PubMed  Google Scholar 

  45. Yu Q, Toole B, Stamenkovic I (1997) Induction of apoptosis of metastatic mammary carcinoma cells in vivo by disruption of tumor cell surface CD44 function. J Exp Med 186:1985–1996

    Article  PubMed  CAS  Google Scholar 

  46. Lakshman M, Subramaniam V, Rubenthiran U, Jothy S (2004) CD44 promotes resistance to apoptosis in human colon cancer cells. Exp Mol Pathol 77:18–25

    Article  PubMed  CAS  Google Scholar 

  47. Wittig BM, Johansson B, Zöller M, Schwärzler C, Günthert U (2000) Abrogation of experimental colitis correlates with increased apoptosis in mice deficient for CD44 variant exon 7 (CD44v7). J Exp Med 191:2053–2064

    Article  PubMed  CAS  Google Scholar 

  48. Schwärzler C, Oliferenko S, Günthert U (2001) Variant isoforms of CD44 are required in early thymocyte development. Eur J Immunol 31:2997–3005

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank to Drs. Thomas Harder (Oxford, UK) for introducing the cavitation bomb method and A. Fontana (University Hospital, Zürich, Switzerland) for kindly providing us with the Neuro-2A cells expressing murine FasL. Thanks go also to Drs A. Rolink, H. Hirsch, I. Raineri for critical comments on the manuscript. We are grateful to Britt Johansson for making the transfectants as well as H. Kohler (Friedrich Miescher Institute, Basel) for sorting the transfectants. M. Wernli, V. Crotet, J. Samaridis, Dr. M. Ji and E. Kump for technical advice and assistance. Dr. P. Marbet and Dr. M. Hogan for their helpful advice concerning the confocal microscopy technique. Financial support: This work is supported by a grant from the Swiss Science Foundation (3100-067084.01) and the Swiss Cancer League (OCS 1265-08-2002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Günthert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 5 (PDF 188 kb)

10495_2007_115_MOESM2_ESM.tif

Expression of moesin and phosphorylated Ezrin/radixin/Moesin (pERM) in Jurkat transfectants. Western blotting showing the expression of moesin and pERM in the different transfectants. (TIFF 3815 kb)

10495_2007_115_MOESM3_ESM.tif

Colocalization between CD44s and Moesin. Jurkat cells transfected with CD44s-GFP (A), CD44sΔcyt-GFP (B) and CD44v-GFP (C). Cells were stained with a mouse anti-human moesin antibody followed by a goat anti-mouse Alexa fluor 568. The merge in yellow represents colocalization between CD44s and moesin. (TIFF 31618 kb)

10495_2007_115_MOESM4_ESM.tif

Colocalization between CD44s and phosphorylated Ezrin/Moesin (pERM). Jurkat cells transfected with CD44s-GFP (A), CD44sΔcyt-GFP (B) and CD44v-GFP (C). Cells were stained with a rabbit anti-human pERM antibody followed by a goat anti-rabbit Alexa fluor 568. The merge in yellow represents colocalization between CD44s and pERM. (TIFF 30366 kb)

10495_2007_115_MOESM5_ESM.tif

Expression of CD44 isoforms and apoptosis induction on primary lymphocytes. Lymph node cells from 6 wild type and 6 CD44v6v7 KO mice were extracted and stimulated for 24, 48 and 72 hours with Phytohemagglutinine (PHA) or anti-CD3 antibody. Expression of Fas, and CD44 was measured by flow cytometry at the different time points. The apoptotic sub G1 population resulting from activation induced cell death (AICD) of lymph node cells was analyzed at 24, 48 and 72 hours by propidium iodide staining. (TIFF 14142 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mielgo, A., Brondani, V., Landmann, L. et al. The CD44 standard/ezrin complex regulates Fas-mediated apoptosis in Jurkat cells. Apoptosis 12, 2051–2061 (2007). https://doi.org/10.1007/s10495-007-0115-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-007-0115-3

Keywords

Navigation