Skip to main content
Log in

Myeloperoxidase binds to non-vital spermatozoa on phosphatidylserine epitopes

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The heme protein myeloperoxidase is released from stimulated polymorphonuclear leukocytes, a cell species found in increasing amounts in the male and female genital tract of patients with genital tract inflammations. Myeloperoxidase binds only to a fraction of freshly prepared human spermatozoa. The number of spermatozoa able to bind myeloperoxidase raised considerably in samples containing pre-damaged cells or in acrosome-reacted samples. In addition, myeloperoxidase released from zymosan-stimulated polymorphonuclear leukocytes was also able to bind to pre-damaged spermatozoa. The ability of spermatozoa to bind myeloperoxidase coincided with the binding of annexin V to externalized phosphatidylserine epitopes indicating the loss of plasma membrane integrity and with the incorporation of ethidium homodimer I. Myeloperoxidase did not interact with intact spermatozoa. Annexin V and myeloperoxidase bind to the same binding sites as verified by double fluorescence techniques, flowcytometry analyses as well as competition experiments. We demonstrated also that myeloperoxidase is eluted together with pure phosphatidylserine liposomes or liposomes composed of phosphatidylserine and phosphatidylcholine in gel filtration, but not with pure phosphatidylcholine liposomes. In conclusion, myeloperoxidase interacts with apoptotic spermatozoa via binding to externalized phosphatidylserine indicating a yet unknown role of this protein in recognition and removal of apoptotic cells during inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Flesh FM, Gadella BM (2000) Dynamics of the mammalian sperm plasma membrane in the process of fertilization. Biochim Biophys Acta 1469:197–235

    Google Scholar 

  2. Host E, Lindenberg S, Ernst E, Christensen F (1999) DNA strand breaks in human spermatozoa: a possible factor, to be considered in couples suffering from unexplained infertility. Acta Obstet Gynecol Scand 78:622–625

    Article  PubMed  CAS  Google Scholar 

  3. Aitken RJ, Buckingham D, West K, Wu FC, Zikopoulos K, Richardson DW (1992) Differential contribution of leukocytes and spermatozoa to the generation of reactive oxygen species in the ejaculates of oligozoospermic patients and fertile donors. J Reprod Fertil 94:451–462

    Article  PubMed  CAS  Google Scholar 

  4. de Lamirande E, Gagnon C (1995) Capacitation-associated production of superoxide anion by human spermatozoa. Int J Androl 16:21–25

    Google Scholar 

  5. Ochsendorf FR (1999) Infections in the male genital tract and reactive oxygen species. Hum Reprod Update 5:399–420

    Article  PubMed  CAS  Google Scholar 

  6. Aitken RJ (1994) A free radical theory of male infertility. Reprod Fertil Dev 6:19–24

    Article  PubMed  CAS  Google Scholar 

  7. Zgliczynski JM, Selvaraj RJ, Paul BB, Stelmaszynska T, Poskitt PKE, Sbarra AJ (1977) Chlorination by the myeloperoxidase-hydrogen peroxide-chloride antimicrobial system at acid and neutral pH. Proc Soc Exp Biol Med 154:418–422

    PubMed  CAS  Google Scholar 

  8. Bakkenist AR, de Boer JEG, Plat H, Wever R (1980) The halide complexes of myeloperoxidase and the mechanism of the halogenation reactions. Biochim Biophys Acta 613:337–348

    PubMed  CAS  Google Scholar 

  9. Marquez LA, Dunford HB (1995) Kinetics of oxidation of tyrosine and dityrosine by myeloperoxidase compound I and II: implications for lipoprotein peroxidation studies. J Biol Chem 270: 30434–30440

    Article  PubMed  CAS  Google Scholar 

  10. Kettle AJ, Winterbourn CC (1997) Myeloperoxidase: a key regulator of neutrophil oxidant production. Redox Rep 3:3–15

    CAS  Google Scholar 

  11. Abu-Soud HM, Hazen SL (2000) Nitric oxide modulates the catalytic activity of myeloperoxidase. J Biol Chem 275:37524–37532

    Article  PubMed  CAS  Google Scholar 

  12. Klebanoff SJ (1991) Myeloperoxidase: occurrence and biological function. In: Everse J, Everse KE, Grisham MB (eds) Peroxidases in chemistry and Biology. CRC Press, Boston, pp 1–35

    Google Scholar 

  13. Hampton MB, Kettle AJ, Winterbourn CC (1998) Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92:3007–3017

    PubMed  CAS  Google Scholar 

  14. Zhang R, Brennan M-L, Shen Z et al (2002) Myeloperoxidase functions as a major enzymatic catalyst for initiation of lipid peroxidation at sites of inflammation. J Biol Chem 277:46116–46122

    Article  PubMed  CAS  Google Scholar 

  15. Nicholls SJ, Hazen SL (2005) Myeloperoxidase and cardiovascular disease. Arterioscler Thromb Vasc Biol 25:1102–1111

    Article  PubMed  CAS  Google Scholar 

  16. Leßig J, Gey C, Schiller J et al (2005) Hypochlorous acid-induced stress on human spermatozoa. A model for inflammation in the male genital tract. Chem Phys Lipids 135:201–211

    Article  PubMed  CAS  Google Scholar 

  17. Lanza F (1998) Clinical manifestation of myeloperoxidase deficiency. J Mol Med 76:676–681

    Article  PubMed  CAS  Google Scholar 

  18. Aratani Y, Koyama H, Nyui S-I, Suzuki K, Kura F, Maeda N (1999) Severe impairment in early host defense against Candida albicans in mice deficient in myeloperoxidase. Infect Immun 67:1828–1836

    PubMed  CAS  Google Scholar 

  19. Gaut JP, Yeh GC, Tran HD et al (2001) Neutrophils employ the myeloperoxidase system to generate antimicrobial brominating and chlorinating oxidants during sepsis. Proc Nat Acad Sci USA 98:11961–11966

    Article  PubMed  CAS  Google Scholar 

  20. Brennan M-L, Gaur A, Pahuja A, Lusis AJ, Reynolds WF (2001) Mice lacking myeloperoxidase are more susceptible to experimental autoimmune encephalomyelitis. J Neuroimmunol 112:97–105

    Article  PubMed  CAS  Google Scholar 

  21. Milla C, Yang S, Cornfield DN et al (2004) Myeloperoxidase deficiency enhances inflammation after allogenic marrow transplantation. Am J Physiol Lung Cell Mol Physiol 287:L706–L714

    Article  PubMed  CAS  Google Scholar 

  22. WHO (1999) WHO laboratory manual for the examination of human semen and sperm-cervical mucus interaction. University Press, Cambridge

    Google Scholar 

  23. Paasch U, Glander H-J (1998) Conventional and standardized computer assisted sperm motion analysis (CASA) in 3731 semen samples. Adv Reprod 1:57–67

    Google Scholar 

  24. Brinkley M (1992) A brief survey of methods for preparing protein conjugates with dyes, haptens, and cross-linking reagents. Bioconjugate Chem 3:2–13

    Article  CAS  Google Scholar 

  25. Tiruppathi C, Naqvi T, Wu Y, Vogel SM, Minshall RD, Malik AB (2004) Albumin mediates the transcytosis of myeloperoxidase by means of caveolae in endothelial cells. Proc Natl Acad Sci USA 101:7699–7704

    Article  PubMed  CAS  Google Scholar 

  26. Glander H-J, Schaller J (1999) Binding of annexin V to plasma membranes of human spermatozoa: a rapid assay for detection of membrane changes after cryostorage. Mol Hum Reprod 5:109–115

    Article  PubMed  CAS  Google Scholar 

  27. Markovits J, Roques BP, de Pecq JB (1979) Ethidium dimer: a new reagent for the fluorimetric determination of nucleic acids. Anal Biochem 94:259–264

    Article  PubMed  CAS  Google Scholar 

  28. Endtz AW (1974) A rapid staining method for differentiating granulocytes from “germinal cells” in Papanicolaou-staining semen. Acta Cytol 18:2–7

    PubMed  CAS  Google Scholar 

  29. Segelmark M, Persson B, Hellmark T, Wieslander J. (1997) Binding and inhibition of myeloperoxidase (MPO): a major function of ceruloplasmin? Clin Exp Immunol 108:167–174

    Article  PubMed  CAS  Google Scholar 

  30. Baldus S, Eiserich JP, Mani A et al (2001) Endothelial transcytosis of myeloperoxidase confers specificity to vascular ECM proteins as targets of tyrosine nitration. J Clin Invest 108:1759–1770

    Article  PubMed  CAS  Google Scholar 

  31. Zheng L, Nukuna B, Brennan M-L et al (2004) Apolipoprotein A-1 is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J Clin Invest 114:529–541

    Article  PubMed  CAS  Google Scholar 

  32. Zheng L, Settle M, Brubaker G et al (2005) Localization of nitration and chlorination sites on apolipoprotein A-1 catalyzed by myeloperoxidase in human atheroma and associated oxidative impairment in ABCA1-dependent cholesterol efflux from macrophages. J Biol Chem 280:38–47

    PubMed  CAS  Google Scholar 

  33. Salavej P, Spalteholz H, Arnhold J (2006) Modification of amino acid residues in human serum albumin by myeloperoxidase. Free Radic Biol Med 40:515–525

    Article  CAS  Google Scholar 

  34. Bouriche H, Salavei P, Lessig J, Arnhold J (2007) Differential effects of flavonols on inactivation of α1-antitrypsin induced by hypohalous acid and the myeloperoxidase-hydrogen peroxide-halide system. Arch Biochem Biophys 459:137–142

    Article  PubMed  CAS  Google Scholar 

  35. Daphna EM, Michaela S, Eynat P, Irit A, Rimon S (1998) Association of myeloperoxidase with heparin: oxidative inactivation of proteins on the surface of endothelial cells by the bound enzyme. Mol Cell Biochem 183:55–61

    Article  PubMed  CAS  Google Scholar 

  36. Walker A, Ward C, Taylor EL et al (2005) Regulation of neutrophil apoptosis and removal of apoptotic cells. Curr Drug Targets Inflamm Allerg 4:447–454

    Article  CAS  Google Scholar 

  37. Liu G, Wu C, Wu Y, Zhao Y (2006) Phagocytosis of apoptotic cells and immune regulation. Sc J Immunol 64:1–9

    Article  CAS  Google Scholar 

  38. Peng SL (2006) Neutrophil apoptosis in autoimmunity. J Mol Med 84:122–125

    Article  PubMed  Google Scholar 

  39. Tsurubuchi T, Aratani Y, Maeda N, Koyama H (2001) Retardation of early-onset PMA-induced apoptosis in mouse neutrophils deficient in myeloperoxidase. J Leukoc Biol 70:52–58

    PubMed  CAS  Google Scholar 

  40. Fadeel B, Kagan VE (2003) Apoptosis and macrophage clearance of neutrophils: regulation by reactive oxygen species. Redox Rep 8:143–150

    Article  PubMed  CAS  Google Scholar 

  41. Lauber K, Blumenthal SG, Waibel M, Wesselborg S (2004) Clearance of apoptotic cells: getting rid of the corpses. Mol Cell 14:277–287

    Article  PubMed  CAS  Google Scholar 

  42. Perretti M, Solito E (2004) Annexin 1 and neutrophil apoptosis. Biochem Soc Transact 32:507–510

    Article  CAS  Google Scholar 

  43. Maderna P, Yona S, Perretti M, Godson C (2005) Modulation of phagocytosis of apoptotic neutrophils by supernatant from dexamethasone-treated macrophages and annexin-derived peptide Ac2–26. J Immunol 174:3727–3733

    PubMed  CAS  Google Scholar 

  44. Somersan S, Bhardwaj N (2001) Tethering and tickling: a new role for the phosphatidylserine receptor. J Cell Biol 155:501–504

    Article  PubMed  CAS  Google Scholar 

  45. Li MO, Sarkisian MR, Mehal WZ, Rahic P, Flavell RA (2003) Phosphatidylserine receptor is required for clearance of apoptotic cells. Science 302:1560–1563

    Article  PubMed  CAS  Google Scholar 

  46. Krysko DV, D’Herde K, Vandenabeele P (2006) Clearance of apoptotic and necrotic cells and its immunological consequences. Apoptosis 11:1709–1726

    Article  PubMed  Google Scholar 

  47. Wolf A, Schmitz C, Böttger A (2007) Changing story of the receptor for phosphatidylserine-dependent clearance of apoptotic cells. EMBO Rep 8:465–469

    Article  PubMed  CAS  Google Scholar 

  48. Greenberg ME, Sen M, Zhang R, Febbraio M, Silverstein R, Hazen SL (2006) Oxidized phosphatidylserine-CD36 interactions play an essential role in macrophage-dependent phagocytosis of apoptotic cells. J Exp Med 203:2613–2625

    Article  PubMed  CAS  Google Scholar 

  49. Zgliczynski JM, Stelmaszynska T, Ostrowski W, Naskalski J, Sznajd J (1968) Myeloperoxidase of human leukaemic leucocytes. Oxidation of amino acids in the presence of hydrogen peroxide. Eur J Biochem 4:540–547

    Article  PubMed  CAS  Google Scholar 

  50. Anderson MM, Hazen SL, Hsu FF, Heinecke JW (1997) Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to convert hydroxy-amino acids into glycoaldehyde, 2-hydroxypropanal, and acrolein. J Clin Invest 99:424–432

    Article  PubMed  CAS  Google Scholar 

  51. Hazen SL, d’Avignon A, Anderson MM, Hsu FF, Heinecke JW (1998) Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to oxidize α-amino acids to a family of reactive aldehydes. J Biol Chem 273:4997–5005

    Article  PubMed  CAS  Google Scholar 

  52. Kanayama A, Inoue J, Sugita-Konishi Y, Shimizu M, Miyamoto Y (2002) Oxidation of IκBα at methionine 45 is one cause of taurine chloramine-induced inhibition of NF-κB activation. J Biol Chem 277:24049–24056

    Article  PubMed  CAS  Google Scholar 

  53. Ogino T, Hosako M, Hiramatsu K, Omori M, Ozaki M, Okada S (2005) Oxidative modification of IκB by monochloramine inhibits tumor necrosis factor α-induced NF-κB activation. Biochim Biophys Acta 1746:135–142

    Article  PubMed  CAS  Google Scholar 

  54. Kim JW, Kim C (2005) Inhibition of LPS-induced NO production by taurine chloramine in macrophages is mediated through RAS-ERK-NF-κB. Biochem Pharmacol 70:1352–1360

    Article  PubMed  CAS  Google Scholar 

  55. Diemer T, Huwe P, Ludwig M, Hauck EW, Weidner W (2003) Urogenital infection and sperm motility. Andrologia 35:283–287

    Article  PubMed  CAS  Google Scholar 

  56. Krause W, Bohring C, Gueth A, Hörster S, Krisp A, Skrzypek J (2003) Cellular and biochemical markers in semen indicating male accessory gland inflammation. Andrologia 35:279–282

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Research Council (Project Nr. Gl 199/4-3). The technical assistance of Mrs. Kersten is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Arnhold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leßig, J., Spalteholz, H., Reibetanz, U. et al. Myeloperoxidase binds to non-vital spermatozoa on phosphatidylserine epitopes. Apoptosis 12, 1803–1812 (2007). https://doi.org/10.1007/s10495-007-0113-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-007-0113-5

Keywords

Navigation