Skip to main content
Log in

Molecular mechanisms of euplotin C-induced apoptosis: involvement of mitochondrial dysfunction, oxidative stress and proteases

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The metabolite euplotin C (EC), isolated from the marine ciliate Euplotes crassus, is a powerful cytotoxic and pro-apoptotic agent in tumour cell lines. For instance, EC induces the rapid depletion of ryanodine Ca2+ stores, the release of cytochrome c from the mitochondria, and the activation of caspase-3, leading to apoptosis. The purpose of this study was to gain further insight into the mechanisms of EC-induced apoptosis in rat pheochromocytoma PC12 cells. We found that EC increases Bax/Bcl-2 ratio and that Bax is responsible of the EC-induced dissipation of the mitochondrial membrane potential (Δψm). In addition, EC induces the generation of reactive oxygene species (ROS) without involvement of p53. The inhibition of ROS generation prevents, at least in part, the pro-apoptotic effects of EC as well as the effects of EC on Bax, Δψm and intracellular free Ca2+, indicating a cross-talk between different pathways. However, definition of the effector cascade turns out to be more complex than expected and caspase-independent mechanisms, acting in parallel with caspases, should also be considered. Among them, EC increases the expression/activity of calpains downstream of ROS generation, although calpains seem to exert protective effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Haefner B (2003) Drugs from the deep: marine natural products as drug candidates. Drug Discov Today 8:536–544

    Article  PubMed  CAS  Google Scholar 

  2. da Rocha AB, Lopes RM, Schwartsmann G (2001) Natural products in anticancer therapy. Curr Opin Pharmacol 1:364–369

    Article  PubMed  CAS  Google Scholar 

  3. Newman DJ, Cragg GM (2004) Advanced preclinical and clinical trials of natural products and related compounds from marine sources. Curr Med Chem 11:1693–1713

    PubMed  CAS  Google Scholar 

  4. Dini F, Guella G, Giubbilini I, Mancini I, Pietra F (1993) Control of interspecific relationships in marine ciliate protists by most evolved natural products. Naturwissenschaften 80:84–86

    Article  CAS  Google Scholar 

  5. Guella G, Dini F, Pietra F (1999) Metabolites with a novel C-30 backbone from marine ciliates. Angew Chem Int Ed 38:1134–1136

    Article  CAS  Google Scholar 

  6. Guella G, Dini F, Pietra F (1996) Epoxyfocardin and its putative biogenetic precursor, focardin, bioactive, new-skeleton, diterpenoids of the marine ciliate Euplotes focardii from Antarctica. Helv Chim Acta 79:439–448

    Article  CAS  Google Scholar 

  7. Guella G, Dini F, Pietra F (1996) Rarisetenolide, epoxyrarisetenolide, and epirarisetenolide, new-skeleton sesquiterpene lactones as taxonomic markers and defensive agents of the marine ciliated morphospecies Euplotes rariseta. Helv Chim Acta 79:2180–2189

    Article  CAS  Google Scholar 

  8. Guella G, Dini F, Pietra F (1995) From epiraikovenal, an instrumental niche-exploitation sesquiterpenoid of some strains of the marine ciliated protist Euplotes raikovi, to an unusual intramolecular tele-dienone-olefin [2 + 2] photocycloaddition. Helv Chim Acta 78:1747–1754

    Article  CAS  Google Scholar 

  9. Guella G, Dini F, Erra F, Pietra F (1994) Raikovenal, a new sesquiterpenoid favoring adaptive radiation of the marine ciliate Euplotes raikovi, and its putative biogenetic precursor, preraikovenal. Chem Commun 22:2585–2586

    Google Scholar 

  10. Guella G, Dini F, Tomei A, Pietra F (1994) Preuplotin, a putative biogenetic precursor of the euplotins, bioactive sesquiterpenoids of the marine ciliated protist Euplotes crassus. J Chem Soc Perkin Trans 1:161–166

    Article  Google Scholar 

  11. Guella G, Dini F, Pietra F (1996) Hydrolytic breakdown of the euplotins, highly strained, adaptive, hemiacetal esters of the marine ciliate Euplotes crassus: a mimic of degradative pathways in nature and a trick for the assignment of the absolute configuration. Helv Chim Acta 79:710–717

    Article  CAS  Google Scholar 

  12. Guella G, Callone E, Mancini I et al (2004) Chemical and structural properties of the inclusion complex of euplotin C with heptakis(2,6-di-O-methyl)-b-cyclodextrin through NMR spectroscopy, electrospray mass spectrometry and molecular mechanics investigations. Eur J Org Chem 2004:1308–1317

    Article  CAS  Google Scholar 

  13. Savoia D, Avanzini C, Allice T et al (2004) Antimicrobial activity of euplotin C, the sesquiterpene taxonomic marker from the marine ciliate Euplotes crassus. Antimicrob Agents Chemother 48:3828–3833

    Article  PubMed  CAS  Google Scholar 

  14. Ismail N, Pihie AH, Nallapan M (2005) Xanthorrhizol induces apoptosis via the up-regulation of bax and p53 in HeLa cells. Anticancer Res 25:2221–2227

    PubMed  CAS  Google Scholar 

  15. Kirana C, McIntosh GH, Record IR, Jones GP (2003) Antitumor activity of extract of Zingiber aromaticum and its bioactive sesquiterpenoid zerumbone. Nutr Cancer 45:218–225

    Article  PubMed  CAS  Google Scholar 

  16. Triana J, Lopez M, Rico M et al (2003) Sesquiterpenoid derivatives from Gonospermum elegans and their cytotoxic activity for HL-60 human promyelocytic cells. J Nat Prod 66:943–948

    Article  PubMed  CAS  Google Scholar 

  17. Woynarowski JM, Napier C, Koester SK et al (1997) Effects on DNA integrity and apoptosis induction by a novel antitumor sesquiterpene drug, 6-hydroxymethylacylfulvene (HMAF, MGI 114). Biochem Pharmacol 54:1181–1193

    Article  PubMed  CAS  Google Scholar 

  18. Hail N Jr, Carter BZ, Konopleva M, Andreeff M (2006) Apoptosis effector mechanisms: a requiem performed in different keys. Apoptosis 11:889–904

    Article  PubMed  Google Scholar 

  19. Fischer U, Schulze-Osthoff K (2005) New approaches and therapeutics targeting apoptosis in disease. Pharmacol Rev 57:187–215

    Article  PubMed  CAS  Google Scholar 

  20. Nicholson DW (2000) From bench to clinic with apoptosis-based therapeutic agents. Nature 407:810–816

    Article  PubMed  CAS  Google Scholar 

  21. Cervia D, Martini D, Garcia-Gil M et al (2006) Cytotoxic effects and apoptotic signalling mechanisms of the sesquiterpenoid euplotin C, a secondary metabolite of the marine ciliate Euplotes crassus, in tumour cells. Apoptosis 11:829–843

    Article  PubMed  CAS  Google Scholar 

  22. Valavanis C, Hu Y, Yang Y et al (2001) Model cell lines for the study of apoptosis in vitro. Methods Cell Biol 66:417–436

    Article  PubMed  CAS  Google Scholar 

  23. Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–565

    Article  PubMed  CAS  Google Scholar 

  24. Szegezdi E, Fitzgerald U, Samali A (2003) Caspase-12 and ER-stress-mediated apoptosis: the story so far. Ann N Y Acad Sci 1010:186–194

    Article  PubMed  CAS  Google Scholar 

  25. Hail N Jr (2005) Mitochondria: a novel target for the chemoprevention of cancer. Apoptosis 10:687–705

    Article  PubMed  CAS  Google Scholar 

  26. Gogvadze V, Orrenius S, Zhivotovsky B (2006) Multiple pathways of cytochrome c release from mitochondria in apoptosis. Biochim Biophys Acta 1757:639–647

    Article  PubMed  CAS  Google Scholar 

  27. Reed JC (2006) Proapoptotic multidomain Bcl-2/Bax-family proteins: mechanisms, physiological roles, and therapeutic opportunities. Cell Death Differ 13:1378–1386

    Article  PubMed  CAS  Google Scholar 

  28. Ly JD, Grubb DR, Lawen A (2003) The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update. Apoptosis 8:115–128

    Article  PubMed  CAS  Google Scholar 

  29. Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287:C817–833

    Article  PubMed  CAS  Google Scholar 

  30. Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83:731–801

    PubMed  CAS  Google Scholar 

  31. Harwood SM, Yaqoob MM, Allen DA (2005) Caspase and calpain function in cell death: bridging the gap between apoptosis and necrosis. Ann Clin Biochem 42:415–431

    Article  PubMed  CAS  Google Scholar 

  32. Halliwell B (2007) Oxidative stress and cancer: have we moved forward? Biochem J 401:1–11

    Article  PubMed  CAS  Google Scholar 

  33. Culmsee C, Landshamer S (2006) Molecular insights into mechanisms of the cell death program: role in the progression of neurodegenerative disorders. Curr Alzheimer Res 3:269–283

    Article  PubMed  CAS  Google Scholar 

  34. Dispersyn G, Nuydens R, Connors R, Borgers M, Geerts H (1999) Bcl-2 protects against FCCP-induced apoptosis and mitochondrial membrane potential depolarization in PC12 cells. Biochim Biophys Acta 1428:357–371

    PubMed  CAS  Google Scholar 

  35. Simon L, Szilagyi G, Bori Z et al (2005) Low dose (-)deprenyl is cytoprotective: it maintains mitochondrial membrane potential and eliminates oxygen radicals. Life Sci 78:225–231

    Article  PubMed  CAS  Google Scholar 

  36. Savignan F, Ballion B, Odessa MF et al (2004) Mitochondrial membrane potential (DeltaPsi) and Ca(2+)-induced differentiation in HaCaT keratinocytes. J Biomed Sci 11:671–682

    PubMed  CAS  Google Scholar 

  37. Orsini F, Migliaccio E, Moroni M et al (2004) The life span determinant p66Shc localizes to mitochondria where it associates with mitochondrial heat shock protein 70 and regulates trans-membrane potential. J Biol Chem 279:25689–25695

    Article  PubMed  CAS  Google Scholar 

  38. Iuvone T, Esposito G, Esposito R et al (2004) Neuroprotective effect of cannabidiol, a non-psychoactive component from Cannabis sativa, on beta-amyloid-induced toxicity in PC12 cells. J Neurochem 89:134–141

    Article  PubMed  CAS  Google Scholar 

  39. Crow JP (1997) Dichlorodihydrofluorescein and dihydrorhodamine 123 are sensitive indicators of peroxynitrite in vitro: implications for intracellular measurement of reactive nitrogen and oxygen species. Nitric Oxide 1:145–157

    Article  PubMed  CAS  Google Scholar 

  40. Traina G, Cannistraro S, Bagnoli P (1996) Effects of somatostatin on intracellular calcium concentration in PC12 cells. J Neurochem 66:485–492

    Article  PubMed  CAS  Google Scholar 

  41. Sandmann S, Prenzel F, Shaw L, Schauer R, Unger T (2002) Activity profile of calpains I and II in chronically infarcted rat myocardium–influence of the calpain inhibitor CAL 9961. Br J Pharmacol 135:1951–1958

    Article  PubMed  CAS  Google Scholar 

  42. Elce JS, Davies PL, Hegadorn C, Maurice DH, Arthur JS (1997) The effects of truncations of the small subunit on m-calpain activity and heterodimer formation. Biochem J 326(Pt 1):31–38

    PubMed  CAS  Google Scholar 

  43. Hetz C, Vitte PA, Bombrun A et al (2005) Bax channel inhibitors prevent mitochondrion-mediated apoptosis and protect neurons in a model of global brain ischemia. J Biol Chem 280:42960–42970

    Article  PubMed  CAS  Google Scholar 

  44. Offen D, Ziv I, Sternin H, Melamed E, Hochman A (1996) Prevention of dopamine-induced cell death by thiol antioxidants: possible implications for treatment of Parkinson’s disease. Exp Neurol 141:32–39

    Article  PubMed  CAS  Google Scholar 

  45. Piga R, Saito Y, Yoshida Y, Niki E (2007) Cytotoxic effects of various stressors on PC12 cells: Involvement of oxidative stress and effect of antioxidants. Neurotoxicology 28:67–75

    Article  PubMed  CAS  Google Scholar 

  46. Penugonda S, Mare S, Goldstein G, Banks WA, Ercal N (2005) Effects of N-acetylcysteine amide (NACA), a novel thiol antioxidant against glutamate-induced cytotoxicity in neuronal cell line PC12. Brain Res 1056:132–138

    Article  PubMed  CAS  Google Scholar 

  47. Murphy PJ, Galigniana MD, Morishima Y et al (2004) Pifithrin-alpha inhibits p53 signaling after interaction of the tumor suppressor protein with hsp90 and its nuclear translocation. J Biol Chem 279:30195–30201

    Article  PubMed  CAS  Google Scholar 

  48. Hoagland MS, Hoagland EM, Swanson HI (2005) The p53 inhibitor pifithrin-alpha is a potent agonist of the aryl hydrocarbon receptor. J Pharmacol Exp Ther 314:603–610

    Article  PubMed  CAS  Google Scholar 

  49. Nair VD, McNaught KS, Gonzalez-Maeso J, Sealfon SC, Olanow CW (2006) p53 mediates nontranscriptional cell death in dopaminergic cells in response to proteasome inhibition. J Biol Chem 281:39550–39560

    Article  PubMed  CAS  Google Scholar 

  50. Fujita H, Ogino T, Kobuchi H et al (2006) Cell-permeable cAMP analog suppresses 6-hydroxydopamine-induced apoptosis in PC12 cells through the activation of the Akt pathway. Brain Res 1113:10–23

    Article  PubMed  CAS  Google Scholar 

  51. Weihl CC, Miller RJ, Roos RP (1999) The role of beta-catenin stability in mutant PS1-associated apoptosis. Neuroreport 10:2527–2532

    Article  PubMed  CAS  Google Scholar 

  52. Wu HM, Chi KH, Lin WW (2002) Proteasome inhibitors stimulate activator protein-1 pathway via reactive oxygen species production. FEBS Lett 526:101–105

    Article  PubMed  CAS  Google Scholar 

  53. Ray SK, Fidan M, Nowak MW et al (2000) Oxidative stress and Ca2+ influx upregulate calpain and induce apoptosis in PC12 cells. Brain Res 852:326–334

    Article  PubMed  CAS  Google Scholar 

  54. Vega IE, Hamano T, Propost JA, Grenningloh G, Yen SH (2006) Taxol and tau overexpression induced calpain-dependent degradation of the microtubule-destabilizing protein SCG10. Exp Neurol 202:152–160

    Article  PubMed  CAS  Google Scholar 

  55. Nakatsu Y, Kotake Y, Ohta S (2006) Tributyltin-induced cell death is mediated by calpain in PC12 cells. Neurotoxicology 27:587–593

    Article  PubMed  CAS  Google Scholar 

  56. Annis MG, Soucie EL, Dlugosz PJ et al (2005) Bax forms multispanning monomers that oligomerize to permeabilize membranes during apoptosis. Embo J 24:2096–2103

    Article  PubMed  CAS  Google Scholar 

  57. Dlugosz PJ, Billen LP, Annis MG et al (2006) Bcl-2 changes conformation to inhibit Bax oligomerization. Embo J 25:2287–2296

    Article  PubMed  CAS  Google Scholar 

  58. Gao G, Dou QP (2000) N-terminal cleavage of bax by calpain generates a potent proapoptotic 18-kDa fragment that promotes bcl-2-independent cytochrome C release and apoptotic cell death. J Cell Biochem 80:53–72

    Article  PubMed  CAS  Google Scholar 

  59. Kucharczak JF, Simmons MJ, Duckett CS, Gelinas C (2005) Constitutive proteasome-mediated turnover of Bfl-1/A1 and its processing in response to TNF receptor activation in FL5.12 pro-B cells convert it into a prodeath factor. Cell Death Differ 12:1225–1239

    Article  PubMed  CAS  Google Scholar 

  60. Engel RH, Evens AM (2006) Oxidative stress and apoptosis: a new treatment paradigm in cancer. Front Biosci 11:300–312

    Article  PubMed  CAS  Google Scholar 

  61. Pelicano H, Carney D, Huang P (2004) ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 7:97–110

    Article  PubMed  CAS  Google Scholar 

  62. Bayir H, Fadeel B, Palladino MJ et al (2006) Apoptotic interactions of cytochrome c: redox flirting with anionic phospholipids within and outside of mitochondria. Biochim Biophys Acta 1757:648–659

    Article  PubMed  CAS  Google Scholar 

  63. Gomez-Lazaro M, Galindo MF, Melero-Fernandez de Mera RM et al (2007) Reactive oxygen species and P38 mapk activate bax to induce mitochondrial cytochrome C release and apoptosis in response to malonate. Mol Pharmacol 71:736–743

    Article  PubMed  CAS  Google Scholar 

  64. Pinton P, Rizzuto R (2006) Bcl-2 and Ca2+ homeostasis in the endoplasmic reticulum. Cell Death Differ 13:1409–1418

    Article  PubMed  CAS  Google Scholar 

  65. Xie H, Johnson GV (1997) Ceramide selectively decreases tau levels in differentiated PC12 cells through modulation of calpain I. J Neurochem 69:1020–1030

    Article  PubMed  CAS  Google Scholar 

  66. Artal-Sanz M, Tavernarakis N (2005) Proteolytic mechanisms in necrotic cell death and neurodegeneration. FEBS Lett 579:3287–3296

    Article  PubMed  CAS  Google Scholar 

  67. Sanvicens N, Gomez-Vicente V, Masip I, Messeguer A, Cotter TG (2004) Oxidative stress-induced apoptosis in retinal photoreceptor cells is mediated by calpains and caspases and blocked by the oxygen radical scavenger CR-6. J Biol Chem 279:39268–39278

    Article  PubMed  CAS  Google Scholar 

  68. Liu-Snyder P, McNally H, Shi R, Borgens RB (2006) Acrolein-mediated mechanisms of neuronal death. J Neurosci Res 84:209–218

    Article  PubMed  CAS  Google Scholar 

  69. Liou AK, Zhou Z, Pei W et al (2005) BimEL up-regulation potentiates AIF translocation and cell death in response to MPTP. Faseb J 19:1350–1352

    PubMed  CAS  Google Scholar 

  70. Demarchi F, Bertoli C, Greer PA, Schneider C (2005) Ceramide triggers an NF-kappaB-dependent survival pathway through calpain. Cell Death Differ 12:512–522

    Article  PubMed  CAS  Google Scholar 

  71. Tan Y, Wu C, De Veyra T, Greer PA (2006) Ubiquitous calpains promote both apoptosis and survival signals in response to different cell death stimuli. J Biol Chem 281:17689–17698

    Article  PubMed  CAS  Google Scholar 

  72. Ishihara I, Minami Y, Nishizaki T, Matsuoka T, Yamamura H (2000) Activation of calpain precedes morphological alterations during hydrogen peroxide-induced apoptosis in neuronally differentiated mouse embryonal carcinoma P19 cell line. Neurosci Lett 279:97–100

    Article  PubMed  CAS  Google Scholar 

  73. Volbracht C, Fava E, Leist M, Nicotera P (2001) Calpain inhibitors prevent nitric oxide-triggered excitotoxic apoptosis. Neuroreport 12:3645–3648

    Article  PubMed  CAS  Google Scholar 

  74. Volbracht C, Chua BT, Ng CP et al (2005) The critical role of calpain versus caspase activation in excitotoxic injury induced by nitric oxide. J Neurochem 93:1280–1292

    Article  PubMed  CAS  Google Scholar 

  75. Kagedal K, Johansson U, Ollinger K (2001) The lysosomal protease cathepsin D mediates apoptosis induced by oxidative stress. Faseb J 15:1592–1594

    PubMed  CAS  Google Scholar 

  76. Sanvicens N, Cotter TG (2006) Ceramide is the key mediator of oxidative stress-induced apoptosis in retinal photoreceptor cells. J Neurochem 98:1432–1444

    Article  PubMed  CAS  Google Scholar 

  77. Yuyama K, Yamamoto H, Nishizaki I et al (2003) Caspase-independent cell death by low concentrations of nitric oxide in PC12 cells: involvement of cytochrome C oxidase inhibition and the production of reactive oxygen species in mitochondria. J Neurosci Res 73:351–363

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research has been developed within the framework of the project INTERREG III A Italy-France (Sardegna-Corsica-Toscana) and financially supported by the Province of Livorno (Italy). We are greatful to Prof. G. Casini (University of Tuscia, Viterbo, Italy) for revising the manuscript. We also wish to thank Dr. B. Antonsson (Serono Pharmaceutical Research Institute, Geneva, Switzerland) for providing us with the Bax channel inhibitor Bci1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Cervia.

Additional information

D. Cervia and M. Garcia-Gil equally contributed to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cervia, D., Garcia-Gil, M., Simonetti, E. et al. Molecular mechanisms of euplotin C-induced apoptosis: involvement of mitochondrial dysfunction, oxidative stress and proteases. Apoptosis 12, 1349–1363 (2007). https://doi.org/10.1007/s10495-007-0075-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-007-0075-7

Keywords

Navigation