Skip to main content
Log in

Fibroblast Growth Factor 1 inhibits p53-dependent apoptosis in PC12 cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The survival activity of FGF1 and the pro-apoptotic activity of p53 were characterized in vitro and/or in vivo for different types of neurons after different stresses and in different neurodegenerative pathologies. To investigate whether or not FGF1 and p53 pathways interact in neuronal cells, we studied the effect of FGF1 on p53-dependent apoptosis in PC12 cells. We first characterized p53-dependent PC12 cell death induced by etoposide (a DNA damaging agent). We showed that etoposide increased p53 stabilization, phosphorylation (Ser-15), nuclear translocation and transcriptional activity. In particular, p53 promoted mdm2, p21, puma and noxa expression in PC12 cells. The activation of p53 initiated a classical mitochondrial apoptosis process associated with caspases activation and nuclear degradation. We demonstrated that FGF1 protected PC12 cells from p53-dependent apoptosis upstream from mitochondrial and nuclear events. FGF1 inhibited etoposide-induced p53 phosphorylation, stabilization, nuclear translocation and transcriptional activity. This study presents the first evidence that FGF1 and p53 pathways interact in neuronal cells, and that FGF1 protects neuronal cells from p53-dependent apoptosis, suggesting that alterations of FGF1/p53 crosstalk could be involved in a large range of neurons and in neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Culmsee C, Mattson MP (2005) p53 in neuronal apoptosis. Biochem Biophys Res Commun 331:761–777

    Article  PubMed  CAS  Google Scholar 

  2. Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev Cancer 2:594–604

    Article  PubMed  CAS  Google Scholar 

  3. Yu J, Zhang L (2005) The transcriptional targets of p53 in apoptosis control. Biochem Biophys Res Commun 331:851–858

    Article  PubMed  CAS  Google Scholar 

  4. Brooks CL, Gu W (2006) p53 ubiquitination: Mdm2 and beyond. Mol Cell 21:307–315

    Article  PubMed  CAS  Google Scholar 

  5. Ho J, Benchimol S (2003) Transcriptional repression mediated by the p53 tumour suppressor. Cell Death Differ 10:404–408

    Article  PubMed  CAS  Google Scholar 

  6. Godefroy N, Bouleau S, Gruel G et al (2004) Transcriptional repression by p53 promotes a Bcl-2-insensitive and mitochondria-independent pathway of apoptosis. Nucleic Acids Res 32:4480–4490

    Article  PubMed  CAS  Google Scholar 

  7. Chipuk JE, Green DR (2006) Dissecting p53-dependent apoptosis. Cell Death Differ 13:994–1002

    Article  PubMed  CAS  Google Scholar 

  8. Bouleau S, Grimal H, Rincheval V et al (2005) FGF1 inhibits p53-dependent apoptosis and cell cycle arrest via an intracrine pathway. Oncogene 24:7839–7849

    Article  PubMed  CAS  Google Scholar 

  9. Powers CJ, McLeskey SW, Wellstein A (2000) Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer 7:165–197

    Article  PubMed  CAS  Google Scholar 

  10. Szebenyi G, Fallon JF (1999) Fibroblast growth factors as multifunctional signaling factors. Int Rev Cytol 185:45–106

    Article  PubMed  CAS  Google Scholar 

  11. Wiedlocha A, Sorensen V (2004) Signaling, internalization, and intracellular activity of fibroblast growth factor. Curr Top Microbiol Immunol 286:45–79

    PubMed  CAS  Google Scholar 

  12. Imamura T, Engleka K, Zhan X et al (1990) Recovery of mitogenic activity of a growth factor mutant with a nuclear translocation sequence. Science 249:1567–1570

    Article  PubMed  CAS  Google Scholar 

  13. Wesche J, Malecki J, Wiedlocha A et al (2005) Two nuclear localization signals required for transport from the cytosol to the nucleus of externally added FGF-1 translocated into cells. Biochemistry 44:6071–6080

    Article  PubMed  CAS  Google Scholar 

  14. Renaud F, Oliver L, Desset S et al (1994) Up-regulation of aFGF expression in quiescent cells is related to cell survival. J Cell Physiol 158:435–443

    Article  PubMed  CAS  Google Scholar 

  15. Renaud F, Desset S, Oliver L et al (1996) The neurotrophic activity of fibroblast growth factor 1 (FGF1) depends on endogenous FGF1 expression and is independent of the mitogen-activated protein kinase cascade pathway. J Biol Chem 271:2801–2811

    Article  PubMed  CAS  Google Scholar 

  16. Desire L, Courtois Y, Jeanny JC (1998) Suppression of fibroblast growth factors 1 and 2 by antisense oligonucleotides in embryonic chick retinal cells in vitro inhibits neuronal differentiation and survival. Exp Cell Res 241:210–221

    Article  PubMed  CAS  Google Scholar 

  17. Heron-Milhavet L, LeRoith D (2002) Insulin-like growth factor I induces MDM2-dependent degradation of p53 via the p38 MAPK pathway in response to DNA damage. J Biol Chem 277:15600–15606

    Article  PubMed  CAS  Google Scholar 

  18. Anderson CN, Tolkovsky AM (1999) A role for MAPK/ERK in sympathetic neuron survival: protection against a p53-dependent, JNK-independent induction of apoptosis by cytosine arabinoside. J Neurosci 19:664–673

    PubMed  CAS  Google Scholar 

  19. Gottlieb TM, Leal JF, Seger R, Taya Y, Oren M (2002) Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis. Oncogene 21:1299–1303

    Article  PubMed  CAS  Google Scholar 

  20. Mayo LD, Donner DB (2002) The PTEN, Mdm2, p53 tumor suppressor-oncoprotein network. Trends Biochem Sci 27:462–467

    Article  PubMed  CAS  Google Scholar 

  21. Ueba T, Nosaka T, Takahashi JA et al (1994) Transcriptional regulation of basic fibroblast growth factor gene by p53 in human glioblastoma and hepatocellular carcinoma cells. Proc Natl Acad Sci USA 91:9009–9013

    Article  PubMed  CAS  Google Scholar 

  22. Galy B, Creancier L, Zanibellato C, Prats AC, Prats H (2001) Tumour suppressor p53 inhibits human fibroblast growth factor 2 expression by a post-transcriptional mechanism. Oncogene 20:1669–1677

    Article  PubMed  CAS  Google Scholar 

  23. Shaulian E, Resnitzky D, Shifman O et al (1997) Induction of Mdm2 and enhancement of cell survival by bFGF. Oncogene 15:2717–2725

    Article  PubMed  CAS  Google Scholar 

  24. Eckenstein F, Woodward WR, Nishi R (1991) Differential localization and possible functions of aFGF and bFGF in the central and peripheral nervous systems. Ann NY Acad Sci 638:348–360

    Article  PubMed  CAS  Google Scholar 

  25. Bugra K, Oliver L, Jacquemin E, Laurent M, Courtois Y, Hicks D (1993) Acidic fibroblast growth factor is expressed abundantly by photoreceptors within the developing and mature rat retina. Eur J Neurosci 5:1586–1595

    Article  PubMed  CAS  Google Scholar 

  26. Stock A, Kuzis K, Woodward WR, Nishi R, Eckenstein FP (1992) Localization of acidic fibroblast growth factor in specific subcortical neuronal populations. J Neurosci 12:4688–4700

    PubMed  CAS  Google Scholar 

  27. Walicke PA (1988) Basic and acidic fibroblast growth factors have trophic effects on neurons from multiple CNS regions. J Neurosci 8:2618–2627

    PubMed  CAS  Google Scholar 

  28. Raguenez G, Desire L, Lantrua V, Courtois Y (1999) BCL-2 is upregulated in human SH-SY5Y neuroblastoma cells differentiated by overexpression of fibroblast growth factor 1. Biochem Biophys Res Commun 258:745–751

    Article  PubMed  CAS  Google Scholar 

  29. Cuevas P, Carceller F and Gimenez-Gallego G (1995) Acidic fibroblast growth factor prevents death of spinal cord motoneurons in newborn rats after nerve section. Neurol Res 17:396–399

    Google Scholar 

  30. Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 73:2424–2428

    Article  PubMed  CAS  Google Scholar 

  31. Rydel RE, Greene LA (1987) Acidic and basic fibroblast growth factors promote stable neurite outgrowth and neuronal differentiation in cultures of PC12 cells. J Neurosci 7:3639–3653

    PubMed  CAS  Google Scholar 

  32. Nakajima M, Kashiwagi K, Ohta J et al (1994) Nerve growth factor and epidermal growth factor rescue PC12 cells from programmed cell death induced by etoposide: distinct modes of protection against cell death by growth factors and a protein-synthesis inhibitor. Neurosci Lett 176:161–164

    Article  PubMed  CAS  Google Scholar 

  33. Wu Y, Karas M, Dupont J, Zhao H, Toyoshima Y, Le Roith D (2004) Multiple signaling pathways are involved in the regulation of IGF-I receptor inhibition of PTEN-enhanced apoptosis. Growth Horm IGF Res 14:52–58

    Article  PubMed  CAS  Google Scholar 

  34. Komarov PG, Komarova EA, Kondratov RV et al (1999) A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285:1733–1737

    Article  PubMed  CAS  Google Scholar 

  35. Shieh SY, Ikeda M, Taya Y, Prives C (1997) DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91:325–334

    Article  PubMed  CAS  Google Scholar 

  36. Reimertz C, Kogel D, Rami A, Chittenden T, Prehn JH (2003) Gene expression during ER stress-induced apoptosis in neurons: induction of the BH3-only protein Bbc3/PUMA and activation of the mitochondrial apoptosis pathway. J Cell Biol 162:587–597

    Article  PubMed  CAS  Google Scholar 

  37. Cregan SP, Arbour NA, Maclaurin JG et al (2004) p53 activation domain 1 is essential for PUMA upregulation and p53-mediated neuronal cell death. J Neurosci 24:10003–10012

    Article  PubMed  CAS  Google Scholar 

  38. Wyttenbach A, Tolkovsky AM (2006) The BH3-only protein Puma is both necessary and sufficient for neuronal apoptosis induced by DNA damage in sympathetic neurons. J Neurochem 96:1213–1226

    Article  PubMed  CAS  Google Scholar 

  39. Zhu X, Yu QS, Cutler RG et al (2002) Novel p53 inactivators with neuroprotective action: syntheses and pharmacological evaluation of 2-imino-2,3,4,5,6,7-hexahydrobenzothiazole and 2-imino-2,3,4,5,6,7-hexahydrobenzoxazole derivatives. J Med Chem 45:5090–5097

    Article  PubMed  CAS  Google Scholar 

  40. Khanna KK, Keating KE, Kozlov S et al (1998) ATM associates with and phosphorylates p53:mapping the region of interaction. Nat Genet 20:398–400

    Article  PubMed  CAS  Google Scholar 

  41. Cho YY, He Z, Zhang Y et al (2005) The p53 protein is a novel substrate of ribosomal S6 kinase 2 and a critical intermediary for ribosomal S6 kinase 2 and histone H3 interaction. Cancer Res 65:3596–3603

    Article  PubMed  CAS  Google Scholar 

  42. Chan SL, Culmsee C, Haughey N, Klapper W, Mattson MP (2002) Presenilin-1 mutations sensitize neurons to DNA damage-induced death by a mechanism involving perturbed calcium homeostasis and activation of calpains and caspase-12. Neurobiol Dis 11:2–19

    Article  PubMed  CAS  Google Scholar 

  43. Dumaz N, Meek DW (1999) Serine15 phosphorylation stimulates p53 transactivation but does not directly influence interaction with HDM2. Embo J 18:7002–7010

    Article  PubMed  CAS  Google Scholar 

  44. Biswas SC, Ryu E, Park C, Malagelada C, Greene LA (2005) Puma and p53 play required roles in death evoked in a cellular model of Parkinson disease. Neurochem Res 30:839–845

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the “Association pour la Recherche Contre le Cancer” (#3367) and the “Ligue Nationale Contre le Cancer”. Sylvina Bouleau held successive fellowships from the “Ministère de l’Education Nationale, de l’Enseignement Supérieur et de la Recherche” and the “Association pour la Recherche contre le Cancer”. Ioana Pârvu-Ferecatu is supported by a fellowships from the “Ministère de l’Education Nationale, de l’Enseignement Supérieur et de la Recherche”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flore Renaud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouleau, S., Pârvu-Ferecatu, I., Rodriguez-Enfedaque, A. et al. Fibroblast Growth Factor 1 inhibits p53-dependent apoptosis in PC12 cells. Apoptosis 12, 1377–1387 (2007). https://doi.org/10.1007/s10495-007-0072-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-007-0072-x

Keywords

Navigation