Skip to main content

Advertisement

Log in

C-terminal binding proteins: Emerging roles in cell survival and tumorigenesis

  • Reviews
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Within a cell, the levels and activity of multiple pro- and anti-apoptotic molecules act in concert to regulate commitment to apoptosis. Whilst the balance between survival and death can be tipped by the effects of single molecules, cellular apoptosis control pathways very often incorporate key transcription factors that co-ordinately regulate the expression of multiple apoptosis control genes. C-terminal binding proteins (CtBPs), which were originally identified through their binding to the Adenovirus E1A oncoprotein, have been described as such transcriptional regulators of the apoptosis program. Specifically, CtBPs function as transcriptional co-repressors, and have been demonstrated to promote cell survival by suppressing the expression of several pro-apoptotic genes. In this review we summarize the evidence supporting a key role for CtBP proteins in cell survival. We also describe the known mechanisms of transcriptional control by CtBPs, and review the multiplicity of intracellular signaling and transcriptional control pathways with which they are known to be involved. Finally we consider these findings in the context of additional known roles of CtBP molecules, and the potential implications that this combined knowledge may have for our comprehension of diseases of cell survival, notably cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sang N, Caro J, Giordano A. Adenoviral E1A: Everlasting tool, versatile applications, continuous contributions and new hypotheses. Front Biosci 2002; 7: d407–13.

    PubMed  CAS  Google Scholar 

  2. Endter C, Dobner T. Cell transformation by human adenoviruses. Curr Top Microbiol Immunol 2004; 273: 163–214.

    PubMed  CAS  Google Scholar 

  3. Schneider JF, Fisher F, Goding CR, Jones NC. Mutational analysis of the adenovirus E1a gene: The role of transcriptional regulation in transformation. Embo J 1987; 6: 2053–2060.

    PubMed  CAS  Google Scholar 

  4. Whyte P, Williamson NM, Harlow E. Cellular targets for transformation by the adenovirus E1A proteins. Cell 1989; 56: 67–75.

    PubMed  CAS  Google Scholar 

  5. Subramanian T, La Regina M, Chinnadurai G. Enhanced ras oncogene mediated cell transformation and tumorigenesis by adenovirus 2 mutants lacking the C-terminal region of E1a protein. Oncogene 1989; 4: 415–420.

    PubMed  CAS  Google Scholar 

  6. Subramanian T, Malstrom SE, Chinnadurai G. Requirement of the C-terminal region of adenovirus E1a for cell transformation in cooperation with E1b. Oncogene 1991; 6: 1171–1173.

    PubMed  CAS  Google Scholar 

  7. Chinnadurai G. Modulation of oncogenic transformation by the human adenovirus E1A C-terminal region. Curr Top Microbiol Immunol 2004; 273: 139–161.

    PubMed  CAS  Google Scholar 

  8. Boyd JM, Subramanian T, Schaeper U, et al. A region in the C-terminus of adenovirus 2/5 E1a protein is required for association with a cellular phosphoprotein and important for the negative modulation of T24-ras mediated transformation, tumorigenesis and metastasis. Embo J 1993; 12: 469–478.

    PubMed  CAS  Google Scholar 

  9. Schaeper U, Boyd JM, Verma S, et al. Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation. Proc Natl Acad Sci USA 1995; 92: 10467–10471.

    PubMed  CAS  Google Scholar 

  10. Katsanis N, Fisher EM. A novel C-terminal binding protein (CTBP2) is closely related to CTBP1, an adenovirus E1A-binding protein, and maps to human chromosome 21q21.3. Genomics 1998; 47: 294–299.

    PubMed  CAS  Google Scholar 

  11. Touitou R, Hickabottom M, Parker G, et al. Physical and functional interactions between the corepressor CtBP and the Epstein-Barr virus nuclear antigen EBNA3C. J Virol 2001; 75: 7749–7755.

    PubMed  CAS  Google Scholar 

  12. Hickabottom M, Parker GA, Freemont P, et al. Two nonconsensus sites in the Epstein-Barr virus oncoprotein EBNA3A cooperate to bind the co-repressor carboxyl-terminal-binding protein (CtBP). J Biol Chem 2002; 277: 47197–47204.

    PubMed  CAS  Google Scholar 

  13. Nibu Y, Zhang H, Bajor E, et al. dCtBP mediates transcriptional repression by Knirps, Kruppel and Snail in the Drosophila embryo. Embo J 1998; 17: 7009–7020.

    PubMed  CAS  Google Scholar 

  14. Poortinga G, Watanabe M, Parkhurst SM. Drosophila CtBP: A Hairy-interacting protein required for embryonic segmentation and hairy-mediated transcriptional repression. Embo J 1998; 17: 2067–2078.

    PubMed  CAS  Google Scholar 

  15. Nibu Y, Zhang H, Levine M. Interaction of short-range repressors with Drosophila CtBP in the embryo. Science 1998; 280: 101–104.

    PubMed  CAS  Google Scholar 

  16. Chinnadurai G. CtBP, an unconventional transcriptional corepressor in development and oncogenesis. Mol Cell 2002; 9: 213–214.

    PubMed  CAS  Google Scholar 

  17. Turner J, Crossley M. The CtBP family: Enigmatic and enzymatic transcriptional co-repressors. Bioessays 2001; 23: 683–690.

    PubMed  CAS  Google Scholar 

  18. Furusawa T, Moribe H, Kondoh H, Higashi Y. Identification of CtBP1 and CtBP2 as corepressors of zinc finger-homeodomain factor deltaEF1. Mol Cell Biol 1999; 19: 8581–8590.

    PubMed  CAS  Google Scholar 

  19. Hildebrand JD, Soriano P. Overlapping and unique roles for C-terminal binding protein 1 (CtBP1) and CtBP2 during mouse development. Mol Cell Biol 2002; 22: 5296–5307.

    PubMed  CAS  Google Scholar 

  20. Sewalt RG, Gunster MJ, van der Vlag J, et al. C-Terminal binding protein is a transcriptional repressor that interacts with a specific class of vertebrate Polycomb proteins. Mol Cell Biol 1999; 19: 777–787.

    PubMed  CAS  Google Scholar 

  21. Schmitz F, Konigstorfer A, Sudhof TC. RIBEYE, a component of synaptic ribbons: A protein’s journey through evolution provides insight into synaptic ribbon function. Neuron 2000; 28: 857–872.

    PubMed  CAS  Google Scholar 

  22. Piatigorsky J. Dual use of the transcriptional repressor (CtBP2)/ribbon synapse (RIBEYE) gene: how prevalent are multifunctional genes? Trends Neurosci 2001; 24: 555–557.

    PubMed  CAS  Google Scholar 

  23. Spano S, Silletta MG, Colanzi A, et al. Molecular cloning and functional characterization of brefeldin A-ADP-ribosylated substrate. A novel protein involved in the maintenance of the Golgi structure. J Biol Chem 1999; 274: 17705–17710.

    PubMed  CAS  Google Scholar 

  24. Monleon I, Iturralde M, Martinez-Lorenzo MJ, et al. Lack of Fas/CD95 surface expression in highly proliferative leukemic cell lines correlates with loss of CtBP/BARS and redirection of the protein toward giant lysosomal structures. Cell Growth Differ 2002; 13: 315–324.

    PubMed  CAS  Google Scholar 

  25. Lin X, Sun B, Liang M, et al. Opposed regulation of corepressor CtBP by SUMOylation and PDZ binding. Mol Cell 2003; 11: 1389–1396.

    PubMed  CAS  Google Scholar 

  26. Kumar V, Carlson JE, Ohgi KA, et al. Transcription corepressor CtBP is an NAD(+)-regulated dehydrogenase. Mol Cell 2002; 10: 857–869.

    PubMed  CAS  Google Scholar 

  27. Balasubramanian P, Zhao LJ, Chinnadurai G. Nicotinamide adenine dinucleotide stimulates oligomerization, interaction with adenovirus E1A and an intrinsic dehydrogenase activity of CtBP. FEBS Lett 2003; 537: 157–160.

    PubMed  CAS  Google Scholar 

  28. Nardini M, Spano S, Cericola C, et al. CtBP/BARS: a dual-function protein involved in transcription co-repression and Golgi membrane fission. Embo J 2003; 22: 3122–3130.

    PubMed  CAS  Google Scholar 

  29. Thio SS, Bonventre JV, Hsu SI. The CtBP2 co-repressor is regulated by NADH-dependent dimerization and possesses a novel N-terminal repression domain. Nucleic Acids Res 2004; 32: 1836–1847.

    PubMed  CAS  Google Scholar 

  30. Zhang Q, Piston DW, Goodman RH. Regulation of corepressor function by nuclear NADH. Science 2002; 295: 1895–1897.

    PubMed  CAS  Google Scholar 

  31. Fjeld CC, Birdsong WT, Goodman RH. Differential binding of NAD+ and NADH allows the transcriptional corepressor carboxyl-terminal binding protein to serve as a metabolic sensor. Proc Natl Acad Sci USA 2003; 100: 9202–9207.

    PubMed  CAS  Google Scholar 

  32. Criqui-Filipe P, Ducret C, Maira SM, Wasylyk B. Net, a negative Ras-switchable TCF, contains a second inhibition domain, the CID, that mediates repression through interactions with CtBP and de-acetylation. Embo J 1999; 18: 3392–3403.

    PubMed  CAS  Google Scholar 

  33. Sollerbrant K, Chinnadurai G, Svensson C. The CtBP binding domain in the adenovirus E1A protein controls CR1-dependent transactivation. Nucleic Acids Res 1996; 24: 2578–2584.

    PubMed  CAS  Google Scholar 

  34. Turner J, Crossley M. Cloning and characterization of mCtBP2, a co-repressor that associates with basic Kruppel-like factor and other mammalian transcriptional regulators. Embo J 1998; 17: 5129–5140.

    PubMed  CAS  Google Scholar 

  35. Koipally J, Georgopoulos K. Ikaros interactions with CtBP reveal a repression mechanism that is independent of histone deacetylase activity. J Biol Chem 2000; 275: 19594–19602.

    PubMed  CAS  Google Scholar 

  36. Vo N, Fjeld C, Goodman RH. Acetylation of nuclear hormone receptor-interacting protein RIP140 regulates binding of the transcriptional corepressor CtBP. Mol Cell Biol 2001; 21: 6181–6188.

    PubMed  CAS  Google Scholar 

  37. Molloy DP, Barral PM, Bremner KH, et al. Structural determinants outside the PXDLS sequence affect the interaction of adenovirus E1A, C-terminal interacting protein and Drosophila repressors with C-terminal binding protein. Biochim Biophys Acta 2001; 1546: 55–70.

    PubMed  CAS  Google Scholar 

  38. Postigo AA, Dean DC. ZEB represses transcription through interaction with the corepressor CtBP. Proc Natl Acad Sci USA 1999; 96: 6683–6688.

    PubMed  CAS  Google Scholar 

  39. Grooteclaes ML, Frisch SM. Evidence for a function of CtBP in epithelial gene regulation and anoikis. Oncogene 2000; 19: 3823–3828.

    PubMed  CAS  Google Scholar 

  40. Frisch SM. Tumor suppression activity of adenovirus E1a protein: Anoikis and the epithelial phenotype. Adv Cancer Res 2001; 80: 39–49.

    Article  PubMed  CAS  Google Scholar 

  41. Peinado H, Portillo F, Cano A. Transcriptional regulation of cadherins during development and carcinogenesis. Int J Dev Biol 2004; 48: 365–375.

    PubMed  CAS  Google Scholar 

  42. Tripathi MK, Misra S, Khedkar SV, et al. Regulation of BRCA2 Gene Expression by the SLUG Repressor Protein in Human Breast Cells. J Biol Chem 2005; 280: 17163–17171.

    PubMed  CAS  Google Scholar 

  43. Shi Y, Sawada J, Sui G, et al. Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature 2003; 422: 735–738.

    PubMed  CAS  Google Scholar 

  44. Zhang CL, McKinsey TA, Lu JR, Olson EN. Association of COOH-terminal-binding protein (CtBP) and MEF2-interacting transcription repressor (MITR) contributes to transcriptional repression of the MEF2 transcription factor. J Biol Chem 2001; 276: 35–39.

    PubMed  CAS  Google Scholar 

  45. Meloni AR, Smith EJ, Nevins JR. A mechanism for Rb/p130-mediated transcription repression involving recruitment of the CtBP corepressor. Proc Natl Acad Sci USA 1999; 96: 9574–9579.

    PubMed  CAS  Google Scholar 

  46. Srinivasan L, Atchison ML. YY1 DNA binding and PcG recruitment requires CtBP. Genes Dev 2004; 18: 2596–2601.

    PubMed  CAS  Google Scholar 

  47. Levine SS, King IF, Kingston RE. Division of labor in polycomb group repression. Trends Biochem Sci 2004; 29: 478–485.

    PubMed  CAS  Google Scholar 

  48. Kim JH, Cho EJ, Kim ST, Youn HD. CtBP represses p300-mediated transcriptional activation by direct association with its bromodomain. Nat Struct Mol Biol 2005.

  49. Weigert R, Silletta MG, Spano S, et al. CtBP/BARS induces fission of Golgi membranes by acylating lysophosphatidic acid. Nature 1999; 402: 429–433.

    PubMed  CAS  Google Scholar 

  50. Hidalgo Carcedo C, Bonazzi M, Spano S, et al. Mitotic Golgi partitioning is driven by the membrane-fissioning protein CtBP3/BARS. Science 2004; 305: 93–96.

    CAS  Google Scholar 

  51. Diao A, Lowe M. Cell biology. The Golgi goes fission. Science 2004; 305: 48–49.

    PubMed  CAS  Google Scholar 

  52. Bonazzi M, Spano S, Turacchio G, et al. CtBP3/BARS drives membrane fission in dynamin-independent transport pathways. Nat Cell Biol 2005.

  53. Brannon M, Brown JD, Bates R, et al. XCtBP is a XTcf-3 co-repressor with roles throughout Xenopus development. Development 1999; 126: 3159–3170.

    PubMed  CAS  Google Scholar 

  54. Grooteclaes M, Deveraux Q, Hildebrand J, et al. C-terminal-binding protein corepresses epithelial and proapoptotic gene expression programs. Proc Natl Acad Sci USA 2003; 100: 4568–4573.

    PubMed  CAS  Google Scholar 

  55. Zhang Q, Yoshimatsu Y, Hildebrand J, et al. Homeodomain interacting protein kinase 2 promotes apoptosis by downregulating the transcriptional corepressor CtBP. Cell 2003; 115: 177–186.

    PubMed  CAS  Google Scholar 

  56. Frisch SM. E1a induces the expression of epithelial characteristics. J Cell Biol 1994; 127: 1085–1096.

    PubMed  CAS  Google Scholar 

  57. Gooding JM, Yap KL, Ikura M. The cadherin-catenin complex as a focal point of cell adhesion and signalling: New insights from three-dimensional structures. Bioessays 2004; 26: 497–511.

    PubMed  CAS  Google Scholar 

  58. Patel SD, Chen CP, Bahna F, et al. Cadherin-mediated cell-cell adhesion: Sticking together as a family. Curr Opin Struct Biol 2003; 13: 690–698.

    PubMed  CAS  Google Scholar 

  59. Hay ED. The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dyn 2005; 233: 706–720.

    PubMed  CAS  Google Scholar 

  60. Wheeler JM. Epigenetics, mismatch repair genes and colorectal cancer. Ann R Coll Surg Engl 2005; 87: 15–20.

    PubMed  CAS  Google Scholar 

  61. Wang HD, Ren J, Zhang L. CDH1 germline mutation in hereditary gastric carcinoma. World J Gastroenterol 2004; 10: 3088–3093.

    PubMed  CAS  Google Scholar 

  62. Chen XF, Zhang HT, Qi QY, et al. Expression of E-cadherin and nm23 is associated with the clinicopathological factors of human non-small cell lung cancer in China. Lung Cancer 2005; 48: 69–76.

    PubMed  Google Scholar 

  63. Syrigos KN, Karapanagiotou E, Harrington KJ. The clinical significance of molecular markers to bladder cancer. Hybrid Hybridomics 2004; 23: 335–342.

    PubMed  CAS  Google Scholar 

  64. Nair KS, Naidoo R, Chetty R. Expression of cell adhesion molecules in oesophageal carcinoma and its prognostic value. J Clin Pathol 2005; 58: 343–351.

    PubMed  CAS  Google Scholar 

  65. Quinn DI, Henshall SM, Sutherland RL. Molecular markers of prostate cancer outcome. Eur J Cancer 2005; 41: 858–887.

    PubMed  CAS  Google Scholar 

  66. Simpson PT, Reis-Filho JS, Gale T, Lakhani SR. Molecular evolution of breast cancer. J Pathol 2005; 205: 248–254.

    PubMed  CAS  Google Scholar 

  67. Vega S, Morales AV, Ocana OH, et al. Snail blocks the cell cycle and confers resistance to cell death. Genes Dev 2004; 18: 1131–1143.

    PubMed  CAS  Google Scholar 

  68. Hennig G, Behrens J, Truss M, et al. Progression of carcinoma cells is associated with alterations in chromatin structure and factor binding at the E-cadherin promoter in vivo. Oncogene 1995; 11: 475–484.

    PubMed  CAS  Google Scholar 

  69. Hemavathy K, Hu X, Ashraf SI, et al. The repressor function of snail is required for Drosophila gastrulation and is not replaceable by Escargot or Worniu. Dev Biol 2004; 269: 411–420.

    PubMed  CAS  Google Scholar 

  70. Sugimachi K, Tanaka S, Kameyama T, et al. Transcriptional repressor snail and progression of human hepatocellular carcinoma. Clin Cancer Res 2003; 9: 2657–2664.

    PubMed  CAS  Google Scholar 

  71. Blanco MJ, Moreno-Bueno G, Sarrio D, et al. Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene 2002; 21: 3241–3246.

    PubMed  CAS  Google Scholar 

  72. Elloul S, Elstrand MB, Nesland JM, et al. Snail, Slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma. Cancer 2005; 103: 1631–1643.

    PubMed  CAS  Google Scholar 

  73. Moody SE, Perez D, Pan TC, et al. The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell 2005; 8: 197–209.

    PubMed  CAS  Google Scholar 

  74. Alpatov R, Munguba GC, Caton P, et al. Nuclear speckle-associated protein Pnn/DRS binds to the transcriptional corepressor CtBP and relieves CtBP-mediated repression of the E-cadherin gene. Mol Cell Biol 2004; 24: 10223–10235.

    PubMed  CAS  Google Scholar 

  75. Doucas H, Garcea G, Neal CP, et al. Changes in the Wnt signalling pathway in gastrointestinal cancers and their prognostic significance. Eur J Cancer 2005; 41: 365–379.

    PubMed  CAS  Google Scholar 

  76. Chen T, Yang I, Irby R, et al. Regulation of caspase expression and apoptosis by adenomatous polyposis coli. Cancer Res 2003; 63: 4368–4374.

    PubMed  CAS  Google Scholar 

  77. Hamada F, Bienz M. The APC tumor suppressor binds to C-terminal binding protein to divert nuclear beta-catenin from TCF. Dev Cell 2004; 7: 677–685.

    PubMed  CAS  Google Scholar 

  78. Sood R, Talwar-Trikha A, Chakrabarti SR, Nucifora G. MDS1/EVI1 enhances TGF-beta1 signaling and strengthens its growth-inhibitory effect but the leukemia-associated fusion protein AML1/MDS1/EVI1, product of the t(3;21), abrogates growth-inhibition in response to TGF-beta1. Leukemia 1999; 13: 348–357.

    PubMed  CAS  Google Scholar 

  79. Hirai H, Izutsu K, Kurokawa M, Mitani K. Oncogenic mechanisms of Evi-1 protein. Cancer Chemother Pharmacol 2001; 48 (Suppl 1): S35–S40.

    PubMed  CAS  Google Scholar 

  80. Izutsu K, Kurokawa M, Imai Y, et al. The corepressor CtBP interacts with Evi-1 to repress transforming growth factor beta signaling. Blood 2001; 97: 2815–2822.

    PubMed  CAS  Google Scholar 

  81. Palmer S, Brouillet JP, Kilbey A, et al. Evi-1 transforming and repressor activities are mediated by CtBP co-repressor proteins. J Biol Chem 2001; 276: 25834–25840.

    PubMed  CAS  Google Scholar 

  82. Alliston T, Ko TC, Cao Y, et al. Repression of BMP and activin-inducible transcription by Evi-1. J Biol Chem 2005.

  83. Siegel PM, Massague J. Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 2003; 3: 807–821.

    PubMed  CAS  Google Scholar 

  84. Mitani K. Molecular mechanisms of leukemogenesis by AML1/EVI-1. Oncogene 2004; 23: 4263–4269.

    PubMed  CAS  Google Scholar 

  85. Melhuish TA, Wotton D. The interaction of the carboxyl terminus-binding protein with the Smad corepressor TGIF is disrupted by a holoprosencephaly mutation in TGIF. J Biol Chem 2000; 275: 39762–39766.

    PubMed  CAS  Google Scholar 

  86. Lin X, Liang YY, Sun B, et al. Smad6 recruits transcription corepressor CtBP to repress bone morphogenetic protein-induced transcription. Mol Cell Biol 2003; 23: 9081–9093.

    PubMed  CAS  Google Scholar 

  87. Parrinello S, Lin CQ, Murata K, et al. Id-1, ITF-2, and Id-2 comprise a network of helix-loop-helix proteins that regulate mammary epithelial cell proliferation, differentiation, and apoptosis. J Biol Chem 2001; 276: 39213–39219.

    PubMed  CAS  Google Scholar 

  88. Wong YC, Wang X, Ling MT. Id-1 expression and cell survival. Apoptosis 2004; 9: 279–289.

    PubMed  CAS  Google Scholar 

  89. Postigo AA, Depp JL, Taylor JJ, Kroll KL. Regulation of Smad signaling through a differential recruitment of coactivators and corepressors by ZEB proteins. Embo J 2003; 22: 2453–2462.

    PubMed  CAS  Google Scholar 

  90. Steel JH, White R, Parker MG. Role of the RIP140 corepressor in ovulation and adipose biology. J Endocrinol 2005; 185: 1–9.

    PubMed  CAS  Google Scholar 

  91. Castet A, Boulahtouf A, Versini G, et al. Multiple domains of the Receptor-Interacting Protein 140 contribute to transcription inhibition. Nucleic Acids Res 2004; 32: 1957–1966.

    PubMed  CAS  Google Scholar 

  92. Schaeper U, Subramanian T, Lim L, et al. Interaction between a cellular protein that binds to the C-terminal region of adenovirus E1A (CtBP) and a novel cellular protein is disrupted by E1A through a conserved PLDLS motif. J Biol Chem 1998; 273: 8549–8552.

    PubMed  CAS  Google Scholar 

  93. Koipally J, Georgopoulos K. Ikaros-CtIP interactions do not require C-terminal binding protein and participate in a deacetylase-independent mode of repression. J Biol Chem 2002; 277: 23143–23149.

    PubMed  CAS  Google Scholar 

  94. Chen PL, Liu F, Cai S, et al. Inactivation of CtIP Leads to Early Embryonic Lethality Mediated by G1 Restraint and to Tumorigenesis by Haploid Insufficiency. Mol Cell Biol 2005; 25: 3535–3542.

    PubMed  CAS  Google Scholar 

  95. Wong AK, Ormonde PA, Pero R, et al. Characterization of a carboxy-terminal BRCA1 interacting protein. Oncogene 1998; 17: 2279–2285.

    PubMed  CAS  Google Scholar 

  96. Yu X, Wu LC, Bowcock AM, et al. The C-terminal (BRCT) domains of BRCA1 interact in vivo with CtIP, a protein implicated in the CtBP pathway of transcriptional repression. J Biol Chem 1998; 273: 25388–25392.

    PubMed  CAS  Google Scholar 

  97. Yoshida K, Miki Y. Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage. Cancer Sci 2004; 95: 866–871.

    PubMed  CAS  Google Scholar 

  98. Powell SN, Kachnic LA. Roles of BRCA1 and BRCA2 in homologous recombination, DNA replication fidelity and the cellular response to ionizing radiation. Oncogene 2003; 22: 5784–5791.

    PubMed  CAS  Google Scholar 

  99. Li S, Chen PL, Subramanian T, et al. Binding of CtIP to the BRCT repeats of BRCA1 involved in the transcription regulation of p21 is disrupted upon DNA damage. J Biol Chem 1999; 274: 11334–11338.

    PubMed  CAS  Google Scholar 

  100. Li S, Ting NS, Zheng L, et al. Functional link of BRCA1 and ataxia telangiectasia gene product in DNA damage response. Nature 2000; 406: 210–215.

    PubMed  CAS  Google Scholar 

  101. Yu X, Baer R. Nuclear localization and cell cycle-specific expression of CtIP, a protein that associates with the BRCA1 tumor suppressor. J Biol Chem 2000; 275: 18541–18549.

    PubMed  CAS  Google Scholar 

  102. Wu-Baer F, Baer R. Effect of DNA damage on a BRCA1 complex. Nature 2001; 414: 36.

    PubMed  CAS  Google Scholar 

  103. Yu X, Chen J. DNA damage-induced cell cycle checkpoint control requires CtIP, a phosphorylation-dependent binding partner of BRCA1 C-terminal domains. Mol Cell Biol 2004; 24: 9478–9486.

    PubMed  CAS  Google Scholar 

  104. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature 2000; 408: 307–310.

    PubMed  CAS  Google Scholar 

  105. Mirnezami AH, Campbell SJ, Darley M, et al. Hdm2 recruits a hypoxia-sensitive corepressor to negatively regulate p53-dependent transcription. Curr Biol 2003; 13: 1234–1239.

    PubMed  CAS  Google Scholar 

  106. Momand J, Wu HH, Dasgupta G. MDM2–master regulator of the p53 tumor suppressor protein. Gene 2000; 242: 15–29.

    PubMed  CAS  Google Scholar 

  107. Kim YH, Choi CY, Lee SJ, et al. Homeodomain-interacting protein kinases, a novel family of co-repressors for homeodomain transcription factors. J Biol Chem 1998; 273: 25875–25879.

    PubMed  CAS  Google Scholar 

  108. D’Orazi G, Cecchinelli B, Bruno T, et al. Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nat Cell Biol 2002; 4: 11–19.

    PubMed  CAS  Google Scholar 

  109. Hofmann TG, Moller A, Sirma H, et al. Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2. Nat Cell Biol 2002; 4: 1–10.

    PubMed  CAS  Google Scholar 

  110. Zhang Q, Nottke A, Goodman RH. Homeodomain-interacting protein kinase-2 mediates CtBP phosphorylation and degradation in UV-triggered apoptosis. Proc Natl Acad Sci USA 2005; 102: 2802–2807.

    PubMed  CAS  Google Scholar 

  111. Riefler GM, Firestein BL. Binding of neuronal nitric-oxide synthase (nNOS) to carboxyl-terminal-binding protein (CtBP) changes the localization of CtBP from the nucleus to the cytosol: A novel function for targeting by the PDZ domain of nNOS. J Biol Chem 2001; 276: 48262–48268.

    PubMed  CAS  Google Scholar 

  112. Kagey MH, Melhuish TA, Wotton D. The polycomb protein Pc2 is a SUMO E3. Cell 2003; 113: 127–137.

    PubMed  CAS  Google Scholar 

  113. Barnes CJ, Vadlamudi RK, Mishra SK, et al. Functional inactivation of a transcriptional corepressor by a signaling kinase. Nat Struct Biol 2003; 10: 622–628.

    PubMed  CAS  Google Scholar 

  114. Poser I, Golob M, Weidner M, et al. Down-regulation of COOH-terminal binding protein expression in malignant melanomas leads to induction of MIA expression. Cancer Res 2002; 62: 5962–5966.

    PubMed  CAS  Google Scholar 

  115. Poser I, Bosserhoff AK. Transcription factors involved in development and progression of malignant melanoma. Histol Histopathol 2004; 19: 173–188.

    PubMed  CAS  Google Scholar 

  116. Lui WO, Foukakis T, Liden J, et al. Expression profiling reveals a distinct transcription signature in follicular thyroid carcinomas with a PAX8-PPAR(gamma) fusion oncogene. Oncogene 2005; 24: 1467–1476.

    PubMed  CAS  Google Scholar 

  117. Johansson C, Zhao H, Bajak E, et al. Impact of the interaction between adenovirus E1A and CtBP on host cell gene expression. Virus Res 2005.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Bergman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergman, L.M., Blaydes, J.P. C-terminal binding proteins: Emerging roles in cell survival and tumorigenesis. Apoptosis 11, 879–888 (2006). https://doi.org/10.1007/s10495-006-6651-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-6651-4

Keywords

Navigation