Skip to main content
Log in

Oxidative stress regulated expression of Ubiquitin Carboxyl-terminal Hydrolase-L1: Role in cell survival

  • Reports
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The ubiquitin Carboxyl-terminal Hydrolase-L1 gene (UCHL1) is a key enzyme in the protein degradation pathway; however, its precise role in protecting cells under stress conditions is unclear. In the present study we investigated the activity of this gene in human NT2/D1 embryonal carcinoma cells subjected to oxygen-glucose deprivation (OGD) and reoxygenation. OGD/reoxygenation cause global metabolic changes due to energy withdrawal and the subsequent generation of reactive oxygen species which initiates either a stress-adaptation-survival response or cell death, depending on the severity of the insult. A bi-phasic change in UCHL1 expression was observed by Q-PCR, Western blotting and flow cytometry. Down regulation of UCHL1 was detected immediately after OGD treatment and its expression was subsequently restored and increased 6 h after OGD treatment as well as during reoxygenation. Furthermore, flow cytometry analysis detected a lower level of UCHL1 only in apoptotic cells that had severe loss of mitochondrial membrane potential. Accordingly, down-regulation of endogenous UCHL1 by antisense cDNA in mouse N2a neuroblastoma cells increased the cell’s sensitivity to OGD treatment. This down-regulation of endogenous UCHL1 led to the accumulation of p27, suggesting that UCHL1 is an essential gene to maintain cell homeostasis under normal growth and oxidative stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem 1998; 67: 425–479.

    Article  PubMed  CAS  Google Scholar 

  2. D’Andrea A, Pellman D. Deubiquitinating enzymes: A new class of biological regulators. Crit Rev Biochem Mol Biol 1998; 33: 337–352.

    Article  PubMed  CAS  Google Scholar 

  3. Koegl M, Hoppe T, Schlenker S, Ulrich HD, Mayer TU, Jentsch S. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 1999; 96: 635–644.

    Article  PubMed  CAS  Google Scholar 

  4. Wilkinson KD, Lee KM, Deshpande S, Duerksen-Hughes P, Boss JM, Pohl J. The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science 1989; 246: 670–673.

    PubMed  CAS  Google Scholar 

  5. Hibi K, Liu Q, Beaudry GA, et al. Serial analysis of gene expression in non-small cell lung cancer. Cancer Res 1998; 58: 5690–5694.

    PubMed  CAS  Google Scholar 

  6. Campbell LK, Thomas JR, Lamps LW, Smoller BR, Folpe AL. Protein gene product 9.5 (PGP 9.5) is not a specific marker of neural and nerve sheath tumors: An immunohistochemical study of 95 mesenchymal neoplasms. Mod Pathol 2003; 16: 963–969.

    Article  PubMed  Google Scholar 

  7. Larsen CN, Krantz BA, Wilkinson KD. Substrate specificity of deubiquitinating enzymes: Ubiquitin C-terminal hydrolases. Biochemistry 1998; 37: 3358–3368.

    Article  PubMed  CAS  Google Scholar 

  8. Liu Y, Fallon L, Lashuel HA, Liu Z, Lansbury PT, Jr.. The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson’s disease susceptibility. Cell 2002; 111: 209–218.

    Article  PubMed  CAS  Google Scholar 

  9. Caballero OL, Resto V, Patturajan M, et al. Interaction and colocalization of PGP9.5 with JAB1 and p27(Kip1). Oncogene 2002; 21: 3003–3010.

    Article  PubMed  CAS  Google Scholar 

  10. Liu Y, Lashuel HA, Choi S, et al. Discovery of inhibitors that elucidate the role of UCH-L1 activity in the H1299 lung cancer cell line. Chem Biol 2003; 10: 837–846.

    Article  PubMed  CAS  Google Scholar 

  11. Lowe J, McDermott H, Landon M, Mayer RJ, Wilkinson KD. Ubiquitin carboxyl-terminal hydrolase (PGP 9.5) is selectively present in ubiquitinated inclusion bodies characteristic of human neurodegenerative diseases. J Pathol 1990; 161: 153–160.

    Article  PubMed  CAS  Google Scholar 

  12. Leroy E, Boyer R, Auburger G, et al. The ubiquitin pathway in Parkinson’s disease. Nature 1998; 395: 451–452.

    Article  PubMed  CAS  Google Scholar 

  13. Harhangi BS, Farrer MJ, Lincoln S, et al. The Ile93Met mutation in the ubiquitin carboxy-terminal-hydrolase-L1 gene is not observed in European cases with familial Parkinson’s disease. Neurosci Lett 1999; 270: 1–4.

    Article  PubMed  CAS  Google Scholar 

  14. Lincoln S, Vaughan J, Wood N, et al. Low frequency of pathogenic mutations in the ubiquitin carboxy-terminal hydrolase gene in familial Parkinson’s disease. Neuroreport 1999; 10: 427–429.

    PubMed  CAS  Google Scholar 

  15. Naze P, Vuillaume I, Destee A, Pasquier F, Sablonniere B. Mutation analysis and association studies of the ubiquitin carboxy-terminal hydrolase L1 gene in Huntington’s disease. Neurosci Lett 2002; 328: 1–4.

    Article  PubMed  CAS  Google Scholar 

  16. Satoh J, Kuroda Y. A polymorphic variation of serine to tyrosine at codon 18 in the ubiquitin C-terminal hydrolase-L1 gene is associated with a reduced risk of sporadic Parkinson’s disease in a Japanese population. J Neurol Sci 2001; 189: 113–117.

    Article  PubMed  CAS  Google Scholar 

  17. Wang J, Zhao CY, Si YM, Liu ZL, Chen B, Yu L. ACT and UCH-L1 polymorphisms in Parkinson’s disease and age of onset. Mov Disord 2002; 17: 767–771.

    Article  PubMed  Google Scholar 

  18. Kurihara LJ, Kikuchi T, Wada K, Tilghman SM. Loss of Uch-L1 and Uch-L3 leads to neurodegeneration, posterior paralysis and dysphagia. Hum Mol Genet 2001; 10: 1963–1970.

    Article  PubMed  CAS  Google Scholar 

  19. Saigoh K, Wang YL, Suh JG, et al. Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice. Nat Genet 1999; 23: 47–51.

    PubMed  CAS  Google Scholar 

  20. Choi J, Levey AI, Weintraub ST, et al. Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson’s and Alzheimer’s diseases. J Biol Chem 2004; 279: 13256–13264.

    Article  PubMed  CAS  Google Scholar 

  21. Hou ST, MacManus JP. Molecular mechanisms of cerebral ischemia-induced neuronal death. Int Rev Cytol 2002; 221: 93–148.

    Article  PubMed  CAS  Google Scholar 

  22. Papucci L, Formigli L, Schiavone N, et al. Apoptosis shifts to necrosis via intermediate types of cell death by a mechanism depending on c- myc and bcl-2 expression. Cell Tissue Res 2004; 316: 197–209.

    Article  PubMed  CAS  Google Scholar 

  23. Liu QY, Ribecco-Lutkiewicz M, Carson C, et al. Mapping the initial DNA breaks in apoptotic Jurkat cells using ligation-mediated PCR 54. Cell Death Differ 2003; 10: 278–289.

    Article  PubMed  CAS  Google Scholar 

  24. Liu QY, Pandey S, Singh RK, et al. DNaseY: A rat DNaseI-like gene coding for a constitutively expressed chromatin-bound endonuclease. Biochemistry 1998; 37: 10134–10143.

    Article  PubMed  CAS  Google Scholar 

  25. Liu QY, Lei JX, LeBlanc J, et al. Regulation of DNaseY activity by actinin-alpha4 during apoptosis. Cell Death Differ 2004; 11: 645–654.

    PubMed  CAS  Google Scholar 

  26. Coqueret O. New roles for p21 and p27 cell-cycle inhibitors: A function for each cell compartment? Trends Cell Biol 2003; 13: 65–70.

    Article  PubMed  CAS  Google Scholar 

  27. Hiraiwa A, Fujita M, Nagasaka T, Adachi A, Ohashi M, Ishibashi M. Immunolocalization of hCDC47 protein in normal and neoplastic human tissues and its relation to growth. Int J Cancer 1997; 74: 180–184.

    Article  PubMed  CAS  Google Scholar 

  28. Munoz JP, Sanchez JR, Maccioni RB. Regulation of p27 in the process of neuroblastoma N2A differentiation. J Cell Biochem 2003; 89: 539–549.

    Article  PubMed  CAS  Google Scholar 

  29. Weigel AL, Ida H, Boylan SA, Hjelmeland LM. Acute hyperoxia-induced transcriptional response in the mouse RPE/choroid. Free Radic Biol Med 2003; 35: 465–474.

    Article  PubMed  CAS  Google Scholar 

  30. Shang F, Gong X, Taylor A. Activity of ubiquitin-dependent pathway in response to oxidative stress. Ubiquitin-activating enzyme is transiently up-regulated. J Biol Chem 1997; 272: 23086–23093.

    Article  PubMed  CAS  Google Scholar 

  31. Kim YH, Lee JH, Lim DS, et al. Gene expression profiling of oxidative stress on atrial fibrillation in humans. Exp Mol Med 2003; 35: 336–349.

    PubMed  CAS  Google Scholar 

  32. Nikawa T, Ishidoh K, Hirasaka K, et al. Skeletal muscle gene expression in space-flown rats. J FASEB 2004; 18: 522–524.

    CAS  Google Scholar 

  33. Gomes-Marcondes MC, Tisdale MJ. Induction of protein catabolism and the ubiquitin-proteasome pathway by mild oxidative stress. Cancer Lett 2002; 180: 69–74.

    Article  PubMed  CAS  Google Scholar 

  34. Noga M, Hayashi T. Ubiquitin gene expression following transient forebrain ischemia. Brain Res Mol Brain Res 1996; 36: 261–267.

    Article  PubMed  CAS  Google Scholar 

  35. Yoneda K, Peck K, Chang MM, et al. Development of high-density DNA microarray membrane for profiling smoke- and hydrogen peroxide-induced genes in a human bronchial epithelial cell line. Am J Respir Crit Care Med 2001; 164: S85–S89.

    PubMed  CAS  Google Scholar 

  36. Ramanathan M, Hassanain M, Levitt M, et al. Oxidative stress increases ubiquitin—protein conjugates in synaptosomes. Neuroreport 1999; 10: 3797–3802.

    PubMed  CAS  Google Scholar 

  37. Vannucci SJ, Mummery R, Hawkes RB, Rider CC, Beesley PW. Hypoxia-ischemia induces a rapid elevation of ubiquitin conjugate levels and ubiquitin immunoreactivity in the immature rat brain. J Cereb Blood Flow Metab 1998; 18: 376–385.

    Article  PubMed  CAS  Google Scholar 

  38. Gray DA, Tsirigotis M, Woulfe J. Ubiquitin, proteasomes, and the aging brain. Sci Aging Knowledge. Environ 2003; 2003: RE6.

    PubMed  Google Scholar 

  39. Castegna A, Aksenov M, Aksenova M, et al. Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part I: Creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic Biol Med 2002; 33: 562–571.

    Article  PubMed  CAS  Google Scholar 

  40. Wojcik C. Proteasomes in apoptosis: Villains or guardians? Cell Mol Life Sci 1999; 56: 908–917.

    Article  PubMed  CAS  Google Scholar 

  41. Kim Y, Cairns MJ, Marouga R, Sun LQ. E6AP gene suppression and characterization with in vitro selected hammerhead ribozymes. Cancer Gene Ther 2003; 10: 707–716.

    Article  PubMed  CAS  Google Scholar 

  42. Yokoi S, Yasui K, Iizasa T, Takahashi T, Fujisawa T, Inazawa J. Down-regulation of SKP2 induces apoptosis in lung-cancer cells. Cancer Sci 2003; 94: 344–349.

    Article  PubMed  CAS  Google Scholar 

  43. Harada T, Harada C, Wang YL, et al. Role of ubiquitin carboxy terminal hydrolase-L1 in neural cell apoptosis induced by ischemic retinal injury in vivo. Am J Pathol 2004; 164: 59–64.

    PubMed  CAS  Google Scholar 

  44. Osaka H, Wang YL, Takada K, et al. Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron. Hum Mol Genet 2003; 12: 1945–1958.

    Article  PubMed  CAS  Google Scholar 

  45. Nho RS, Sheaff RJ. p27kip1 contributions to cancer. Prog Cell Cycle Res 2003; 5: 249–259.

    PubMed  Google Scholar 

  46. Philipp-Staheli J, Payne SR, Kemp CJ. p27(Kip1): Regulation and function of a haploinsufficient tumor suppressor and its misregulation in cancer. Exp Cell Res 2001; 264: 148–168.

    Article  PubMed  CAS  Google Scholar 

  47. Drexler HC. The role of p27Kip1 in proteasome inhibitor induced apoptosis. Cell Cycle 2003; 2: 438–441.

    PubMed  CAS  Google Scholar 

  48. Ishimi Y, Komamura-Kohno Y, Kwon HJ, Yamada K, Nakanishi M. Identification of MCM4 as a target of the DNA replication block checkpoint system. J Biol Chem 2003; 278: 24644–24650.

    Article  PubMed  CAS  Google Scholar 

  49. You Z, Ishimi Y, Masai H, Hanaoka F. Roles of Mcm7 and Mcm4 subunits in the DNA helicase activity of the mouse Mcm4/6/7 complex. J Biol Chem 2002; 277: 42471–42479.

    Article  PubMed  CAS  Google Scholar 

  50. Dery MC, Leblanc V, Shooner C, Asselin E. Regulation of Akt expression and phosphorylation by 17beta-estradiol in the rat uterus during estrous cycle. Reprod Biol Endocrinol 2003; 1: 47.

    Article  PubMed  Google Scholar 

  51. Ewen ME. Where the cell cycle and histones meet. Genes Dev 2000; 14: 2265–2270.

    Article  PubMed  CAS  Google Scholar 

  52. Langley B, Thomas M, McFarlane C, Gilmour S, Sharma M, Kambadur R. Myostatin inhibits rhabdomyosarcoma cell proliferation through an Rb-independent pathway. Oncogene 2004; 23: 524–534.

    Article  PubMed  CAS  Google Scholar 

  53. Katayose Y, Kim M, Rakkar AN, Li Z, Cowan KH, Seth P. Promoting apoptosis: A novel activity associated with the cyclin-dependent kinase inhibitor p27. Cancer Res 1997; 57: 5441–5445.

    PubMed  CAS  Google Scholar 

  54. Katner AL, Hoang QB, Gootam P, et al. Induction of cell cycle arrest and apoptosis in human prostate carcinoma cells by a recombinant adenovirus expressing p27(Kip1). Prostate 2002; 53: 77–87.

    Article  PubMed  CAS  Google Scholar 

  55. Wang X, Gorospe M, Huang Y, Holbrook NJ. p27Kip1 overexpression causes apoptotic death of mammalian cells. Oncogene 1997; 15: 2991–2997.

    Article  PubMed  CAS  Google Scholar 

  56. Drexler HC, Pebler S. Inducible p27(Kip1) expression inhibits proliferation of K562 cells and protects against apoptosis induction by proteasome inhibitors. Cell Death Differ 2003; 10: 290–301.

    Article  PubMed  CAS  Google Scholar 

  57. Eymin B, Haugg M, Droin N, Sordet O, Dimanche-Boitrel MT, Solary E. p27Kip1 induces drug resistance by preventing apoptosis upstream of cytochrome c release and procaspase-3 activation in leukemic cells. Oncogene 1999; 18: 1411–1418.

    Article  PubMed  CAS  Google Scholar 

  58. Eymin B, Sordet O, Droin N, et al. Caspase-induced proteolysis of the cyclin-dependent kinase inhibitor p27Kip1 mediates its anti-apoptotic activity. Oncogene 1999; 18: 4839–4847.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Y. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, H., Sikorska, M., LeBlanc, J. et al. Oxidative stress regulated expression of Ubiquitin Carboxyl-terminal Hydrolase-L1: Role in cell survival. Apoptosis 11, 1049–1059 (2006). https://doi.org/10.1007/s10495-006-6303-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-6303-8

Keywords

Navigation