Skip to main content

Advertisement

Log in

Regulation of survivin by retinoic acid and its role in paclitaxel-mediated cytotoxicity in MCF-7 breast cancer cells

  • Reports
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The chemotherapeutic drug paclitaxel induces microtubular stabilization and mitotic arrest associated with increased survivin expression. Survivin is a member of the inhibitor of apoptosis (iap) family which is highly expressed in during G2/M phase where it regulates spindle formation during mitosis. It is also constitutively overexpressed in most cancer cells where it may play a role in chemotherapeutic resistance. MCF-7 breast cancer cells stably overexpressing the sense strand of survivin (MCF-7(survivin-S) cells) were more resistant to paclitaxel than cells depleted of survivin (MCF-7(survivin-AS) despite G2/M arrest in both cell lines. However, survivin overexpression did not protect cells relative to control MCF-7(pcDNA3) cells. Paclitaxel-induced cytotoxicity can be enhanced by retinoic acid and here we show that RA strongly reduces survivin expression in MCF-7 cells and prevents paclitaxel-mediated induction of survivin expression. Mitochondrial release of cytochrome c after paclitaxel alone or in combination with RA was weak, however robust Smac release was observed. While RA/paclitaxel-treated MCF-7 (pcDNA3) cultures contained condensed apoptotic nuclei, MCF-7(survivin-S) nuclei were morphologically distinct with hypercondensed disorganized chromatin and released mitochondrial AIF-1. RA also reduced paclitaxel-associated levels of cyclin B1 expression consistent with mitotic exit. MCF-7(survivin-S) cells displayed a 30% increase in >2N/<4N ploidy while there was no change in this compartment in vector control cells following RA/paclitaxel. We propose that RA sensitizes MCF-7 cells to paclitaxel at least in part through survivin downregulation and the promotion of aberrant mitotic progression resulting in apoptosis. In addition we provide biochemical and morphological data which suggest that RA-treated MCF-7(survivin-S) cells can also undergo catastrophic mitosis when exposed to paclitaxel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li P, Nijhawan D, Budihardjo I, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997; 91: 479–489.

    Article  PubMed  CAS  Google Scholar 

  2. Liston P, Roy N, Tamai K, et al. Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature 1996; 379: 349–353.

    Article  PubMed  CAS  Google Scholar 

  3. Deveraux QL, Reed JC. IAP family proteins- suppressor of apoptosis. Genes Dev 1999; 13: 239–252.

    PubMed  CAS  Google Scholar 

  4. Miller LK. An exegesis of IAPs: Salvation and surprises from BIR motifs. Trends Cell Biol 1999; 9: 323–328.

    Article  PubMed  CAS  Google Scholar 

  5. Deveraux QL, Roy N, Stennicke HR, et al. The IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J 1998; 17: 2215–2223.

    Article  PubMed  CAS  Google Scholar 

  6. Ambrosini G, Adida C, Altieri DC. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat. Med 1997; 3: 917–921.

    Article  PubMed  CAS  Google Scholar 

  7. Li F, Ackermann EJ, Bennett CF, et al. Pleiotropic cell-division defects and apoptosis induced by interference with survivin function. Nat Cell Biol 1999; 1: 461–466.

    Article  PubMed  CAS  Google Scholar 

  8. Tamm L, Want Y, Sausville E, et al. The IAP family protein survivin inhibits caspase activity and apoptosis induced by Fas(CDC95), Bax, caspases and anticancer drugs. Cancer Res 1998; 59: 5315–5320.

    Google Scholar 

  9. Verdicia MA, Huang H, Dutil E, Kaiser DA, Hunter T, Noel JP. Structure of the human anti-apoptotic protein survivin reveals a dimeric arrangement. Nat Struct Biol 2000; 7: 602–608.

    Article  Google Scholar 

  10. Song Z, Yao X, Wu M. Direct interaction between survivin and Smac/DIABLO is essential for the anti-apoptotic activity of survivin during paclitaxel-induced apoptosis. J Biol Chem 2003; 278: 23130–23140.

    Article  PubMed  CAS  Google Scholar 

  11. Du C, Fang M, Li Y, Li L, Wang X. SMAC, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 2000; 102: 33–42.

    Article  PubMed  CAS  Google Scholar 

  12. Verhagen AM, Ekert PG, Pakusch M, et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 2000; 102: 43–53.

    Article  PubMed  CAS  Google Scholar 

  13. Li F, Altieri DC. The cancer antiapoptosis mouse survivin gene: Characterization of locus and transcriptional requirements of basal and cell cycle dependent expression. Cancer Res 1999; 59: 3143–3151.

    PubMed  CAS  Google Scholar 

  14. O’Connor DS, Grossman D, Plescia J, et al. Regulation of apoptosis at cell division by p34cdc2 phosphorylation of survivin. Proc Natl Acad Sci USA 2000; 97: 13103–13107.

    Article  PubMed  CAS  Google Scholar 

  15. Lens SMA, Wolthuis RMF, Klompmaker R, et al. Survivin is required for a sustained spindle checkpoint arrest in response to lack of tension. EMBO J 2003; 22: 2934–2947.

    Article  PubMed  CAS  Google Scholar 

  16. Carvalho A, Carmena M, Sambade C, Earnshaw WC, Wheatley SP. Survivin is required for stable checkpoint activation in paclitaxel-treated HeLa cells. J Cell Sci 2003; 116: 2987–2998.

    Article  PubMed  CAS  Google Scholar 

  17. Blajeski AL, Kottke TJ, Kaufmann SH. A multistep model for paclitaxel-induced apoptosis in human breast cancer cell lines. Exp. Cell Res 2001; 270: 277–228.

    Article  PubMed  CAS  Google Scholar 

  18. Castedo M, Perfettini J-L, Roumier T, Andreau K, Medema R, Kroemer G. Cell death by mitotic catastrophe: A molecular definition. Oncogene 2004; 23: 2825–2837.

    Article  PubMed  CAS  Google Scholar 

  19. Swanson PE, Carroll SB, Zhang XF, Mackey MA. Spontaneous premature chromosome condensation, micronucleus formation, and non-apoptotic cell death in heated HeLa S3 cells. Ultrastructural observations. Am J Pathol 1995; 146: 963–997.

    PubMed  CAS  Google Scholar 

  20. Iazini F, Mackey MA. Spontaneous premature chromosome condensation and mitotic catastrophe following irradiation of HeLa S3 cells. Int J Radiat Biol 1997; 72: 409–421.

    Article  Google Scholar 

  21. Roninson IB, Broude EV, Chang B-D. If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resistance Updates 2001; 4: 303–313.

    Article  PubMed  CAS  Google Scholar 

  22. O’Connor DS, Wall NR, Porter AC, Altieri DC. A p34(cdc2) survival checkpoint in cancer. Cancer Cell 2002; 2: 43–54.

    Article  PubMed  CAS  Google Scholar 

  23. Ling X, Bernacki RJ, Brattain MG, Li F. Induction of survivin expression by paclitaxel (paclitaxel) is an early event, which is independent of paclitaxel-mediated G2/M arrest. J Biol Chem 2004; 279: 15196–15203.

    Article  PubMed  CAS  Google Scholar 

  24. Zhou J, O’Brate A, Zelnak A, Giannakakou P. Survivin deregulation in β-tubulin mutant ovarian cancer cells underlies their compromised mitotic response to paclitaxel. Cancer Res 2004; 64: 8708–8714.

    Article  PubMed  CAS  Google Scholar 

  25. Glass CK, Rosenfeld MG, Rose DW, et al. Mechanisms of transcriptional activation by retinoic acid receptors. Biochem Soc Trans 1997; 25: 602–605.

    PubMed  CAS  Google Scholar 

  26. Nagy L, Thomazy VA, Heyman RA, Davies PJ. Retinoid-induced apoptosis in normal and neoplastic tissues. Cell Death Differ 1998; 5: 11–19.

    Article  PubMed  CAS  Google Scholar 

  27. Mangiarotti R, Danova M, Alberici R, Pillicciari C. All-trans retinoic acid (ATRA)-induced apoptosis is preceded by G1 arrest in human MCF-7 breast cancer cells. Br J Cancer 1998; 77: 186–191.

    PubMed  CAS  Google Scholar 

  28. Pratt MAC, Niu MY, White D. Differential regulation of protein expression, growth and apoptosis by natural and synthetic retinoids. J Cell Biochem 2003; 90: 692–708.

    Article  PubMed  CAS  Google Scholar 

  29. Elstner E, Muller C, Koshizuka K, et al. Ligands for peroxisome proliferator-activated receptor gamma and retinoic acid receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in BNX mice. Proc Natl Acad Sci USA 1998; 95: 8806–8811.

    Article  PubMed  CAS  Google Scholar 

  30. Wang Q, Yang W, Uytingco MS, Christakos S, Wieder R. 1,25-Dihydroxyvitamin D3 and all-trans retinoic acid sensitizes cancer cells to chemotherapy-induced cell death. Cancer Res 2000; 60: 2040–2048.

    PubMed  CAS  Google Scholar 

  31. Vivat-Hannah V, You D, Rizzo C, et al. Synergistic cytotoxicity exhibited by combination treatment of selective retinoid ligands with paclitaxel (Paclitaxel). Cancer Res 2001; 61: 8703–8711.

    PubMed  CAS  Google Scholar 

  32. Nehme A, Varadarajan P, Sellakumar G, et al. Modulation of docetaxel-induced apoptosis and cell cycle arrest by all-tran retinoid acid in prostate cancer cells. Br J Cancer 2001; 84: 1571–1576.

    Article  PubMed  CAS  Google Scholar 

  33. Pratt MAC, Niu M-Y. Bcl-2 controls caspase activation following a p53-dependent cyclin D1-induced death signal. J Biol Chem 2003; 278: 14219–14229.

    Article  PubMed  CAS  Google Scholar 

  34. Li F, Ambrosini G, Chu EY, et al. Cell cycle control of apoptosis and mitotic spindle checkpoint by survivin. Nature 1998; 396: 580–584.

    Article  PubMed  CAS  Google Scholar 

  35. Hu S, Yang X. Cellular inhibitor of apoptosis 1 and 2 are ubiquitin ligases for the apoptosis inducer Smac/DIABLO. J Biol Chem 2003; 278: 10055–10060.

    Article  PubMed  CAS  Google Scholar 

  36. Dahlseid JN, Lill R, Green JM, Xu X, Qui Y, Pierce SK. PBP74, a new member of the mammalian 70-kDa heat shock protein family is a mitochondrial protein. Mol Cell Biol 1994; 5: 1265–1275.

    CAS  Google Scholar 

  37. Teixeira C, Pratt MAC. Cdk2 is a target for retinoic acid-mediated growth inhibition in MCF-7 human breast cancer cells. Mol Endocrinol 1997; 11: 1191–1202.

    Article  PubMed  CAS  Google Scholar 

  38. Niu M.-Y, Menard M, Reed JC, Krajewski S, Pratt MAC. Ectopic expression of cyclin D1 amplifies a retinoic acid-induced mitochondrial death pathway in breast cancer cells. Oncogene 2001; 20: 3506–3518.

    Article  PubMed  CAS  Google Scholar 

  39. Storchova Z, Pellman D. From polyploidy to aneuploidy, genome instability and cancer. Nat Rev Mol Cell Biol 2004; 5: 45–54.

    Article  PubMed  CAS  Google Scholar 

  40. Susin SA, Lorenzo HK, Zamzami N, et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999; 397: 441–446.

    Article  PubMed  CAS  Google Scholar 

  41. Daugas E, Nochy D, Ravagnan L, Loeffler M, Susin SA, Zamzani N, Kroemer G. Apoptosis-inducing factor (AIF): A ubiquitous mitochondrial oxidoreductase involved in apoptosis. FEBS Lett 2000; 476: 118–123.

    Article  PubMed  CAS  Google Scholar 

  42. Ambrosini G, Adida C, Sirugo G, Altieri DC. Induction of apoptosis and inhibition of cell proliferation by survivin gene targeting. J Biol Chem 1998; 273: 11177–11182.

    Article  PubMed  CAS  Google Scholar 

  43. Chen J, Wu W, Tahir SK, et al. Down-regulation of survivin by antisense oligonucleotides increases apoptosis, inhibits cytokinesis and anchorage-dependent growth. Neoplasia 2000; 2: 235–241.

    Article  PubMed  CAS  Google Scholar 

  44. Lew DJ, Burke DJ. The spindle assembly and spindle position checkpoints. Annu Rev Genet 2003; 37: 251–282.

    Article  PubMed  CAS  Google Scholar 

  45. Shah JV, Botvinick E, Bonday Z, Furnari F, Berns M, Cleveland DW. Dynamics of centromere and kinetochore proteins; implications for checkpoint signaling and silencing. Curr Biol 2004; 14: 942–952.

    PubMed  CAS  Google Scholar 

  46. Shankar SL, Mani S, O’Guin KN, Kandimalla ER, Agrawal S, Shafit-Zagardo B. Survivin inhibition induces human neural tumor cell death through caspase-independent and -dependent pathways. J Neurochem 2001; 79: 426–436.

    Article  PubMed  CAS  Google Scholar 

  47. Ahn HJ, Kim YS, Kim J-U, Han SM, Yang HO. Mechanism of paclitaxel-induced apoptosis in human SKOV3 ovarian carcinoma cells. J Cell Biochem 2004; 91: 1043–1052.

    Article  PubMed  CAS  Google Scholar 

  48. Liao PC, Lieu CH. Cell cycle specific induction of apoptosis and necrosis by paclitaxel in leukemic U937 cells. Life Sci 2005; 76: 1623–1639.

    Article  PubMed  CAS  Google Scholar 

  49. von Haefen C, Weider T, Essmann F, Schulze-Osthoff K, Dorken B, Daniel PT. Paclitaxel-induced apoptosis in BJAB cell proceeds via a death receptor-independent, caspases-3/-8-driven mitochondrial amplification loop. Oncogene 2003; 22: 236–2247.

    Article  Google Scholar 

  50. McNeish IA, Bell S, McKay T, Tenev T, Marani M, Lemoine NR. Expression of Smac/DIABLO in ovarian carcinoma cells induces apoptosis via a caspase-9-mediated pathway. Exp Cell Res 2003; 286: 186–198.

    Article  PubMed  CAS  Google Scholar 

  51. Ofir R, Seidman R, Rabinski T, et al. Paclitaxel-induced apoptosis in human SKOV3 ovarian and MCF-7 breast cancinoma cells is caspase-3-and caspase-9 independent. Cell Death Differ 2002; 9: 636–642.

    Article  PubMed  CAS  Google Scholar 

  52. Huisman C, Ferreira CG, Broker LE, et al. Paclitaxel triggers cell death primarily via caspase-independent routes in non-small cell lung cancer cell line NCI-H460. Clin Cancer Res 2002; 8: 596–606.

    PubMed  CAS  Google Scholar 

  53. Budman DR, Calabro A. in vitro search for synergy and antagonism: Evaluation of docetaxel combinations in breast cancer cell lines. Breast Cancer Res Treat 2002; 74: 41

    Article  PubMed  CAS  Google Scholar 

  54. Caliaro MJ, Vitaux P, Lafon C, et al. Multifactorial mechanism for the potentiation of cisplatin (CDDP) cytotoxicity by all-trans retinoic acid (ATRA) in human ovarian carcinoma cell lines. Br J Cancer 1997; 75: 333–340.

    PubMed  CAS  Google Scholar 

  55. Lippman SM, Lotan R. Advances in the development of retinoids as chemopreventive agents. J Nutr 2000; 130: 479S–482S.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Christine Pratt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pratt, M., Niu, MY. & Renart, L. Regulation of survivin by retinoic acid and its role in paclitaxel-mediated cytotoxicity in MCF-7 breast cancer cells. Apoptosis 11, 589–605 (2006). https://doi.org/10.1007/s10495-006-4603-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-4603-7

Keywords

Navigation