Skip to main content
Log in

Heat-induced programmed cell death in Leishmania infantum is reverted by Bcl-XL expression

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

An increasing number of reports indicate that single-celled organisms are able to die following what seems to be an ordered program of cell death with strong similarities to apoptosis from higher eukaryotes. DNA degradation and several other apoptotic-like processes have also been described in the parasitic protozoa Leishmania. However, the existence of an apoptotic death in this parasite is still a matter of controversy. Our results indicate that most of the processes of macromolecular degradation and organelle dysfunction observed in mammalian cells during apoptosis can also be reproduced in promastigotes of the genus Leishmania when incubated at temperatures above 38°C. These processes can be partially reversed by the expression of the anti-apoptotic mammalian gene Bcl-XL, which suggests that this family of apoptosis-regulating proteins was present very early in the evolution of eukaryotic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ameisen JC. On the origin, evolution, and nature of programmed cell death: A timeline of four billion years. Cell Death Differ 2002; 9: 367–393.

    Article  CAS  PubMed  Google Scholar 

  2. Cikala M, Wilm B, Hobmayer E, Bottger A, David CN. Identification of caspases and apoptosis in the simple metazoan Hydra. Curr Biol 1999; 9: 959–962.

    Article  CAS  PubMed  Google Scholar 

  3. Horvitz HR. Genetic control of programmed cell death in the nematode Caenorhabditis elegans. Cancer Res 1999; 59: 1701s–1706s.

    CAS  PubMed  Google Scholar 

  4. Meier P, Finch A, Evan G. Apoptosis in development. Nature 2000; 407: 796–801.

    Article  CAS  PubMed  Google Scholar 

  5. Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR, The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 1993; 75: 641–652.

    Article  CAS  PubMed  Google Scholar 

  6. Hengartner MO, Horvitz HR. The C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 1994; 76: 665–676.

    Article  CAS  PubMed  Google Scholar 

  7. Greenberg JT. Programmed cell death: A way of life for plants. Proc Natl Acad Sci USA 1996; 93: 12094–12097.

    CAS  PubMed  Google Scholar 

  8. Beers EP. Programmed cell death dureing plant growth and development. Cell Death Differ 1997; 4: 649–661.

    Article  CAS  PubMed  Google Scholar 

  9. Greenberg JT, Guo A, Klessig DF, Ausubel FM. Programmed cell death in plants: A pathogen-triggered response activated coordinately with multiple defense functions. Cell 1994; 77: 551–563.

    Article  CAS  PubMed  Google Scholar 

  10. Mitsuhara I, Malik KA, Miura M, Ohashi Y. Animal cell-death suppressors Bcl-x(L) and Ced-9 inhibit cell death in tobacco plants. Curr Biol 1999; 9: 775–778.

    Article  CAS  PubMed  Google Scholar 

  11. Ludovico P, Sousa MJ, Siva MT, Leao C, Corte-Real M. Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology 2001; 147: 2409–2415.

    CAS  PubMed  Google Scholar 

  12. Del Carratore R, Della Croce C, Simili M, Taccini E, Scavuzzo M, Sbrana S. Cell cycle and morphological alterations as indicative of apoptosis promoted by UV irradiation in S. cerevisiae. Mutat Res 2002; 513: 183–191.

    CAS  PubMed  Google Scholar 

  13. Chen SR, Dunigan DD, Dickman MB. Bcl-2 family members inhibit oxidative stress-induced programmed cell death in Saccharomyces cerevisiae. Free Radic Biol Med 2003; 34: 1315–1325.

    CAS  PubMed  Google Scholar 

  14. Madeo F, Herker E, Maldener C, et al. A caspase-related protease regulates apoptosis in yeast. Mol Cell 2002; 9: 911–917.

    Article  CAS  PubMed  Google Scholar 

  15. Skulachev VP. Programmed death in yeast as adaptation?. FEBS Lett 2002; 528: 23–26.

    Article  CAS  PubMed  Google Scholar 

  16. Phillips AJ, Sudbery I, Ramsdale M. Apoptosis induced by environmental stresses and amphotericin B in Candida albicans. Proc Natl Acad Sci USA 2003; 100: 14327–14332.

    Article  CAS  PubMed  Google Scholar 

  17. Welburn SC, Maudlin I. Control of Trypanosoma brucei brucei infections in tsetse, Glossina morsitans. Med Vet Entomol 1997; 11: 286–289.

    CAS  PubMed  Google Scholar 

  18. Ameisen JC, Idziorek T, Billaut-Multo O, et al. Apoptosis in a unicellular eukaryote (Trypanosoma cruzi): Implications for the evolutionary origin and role of programmed cell death in the control of cell proliferation, differentiation and survival. Parasitol Today 1996; 12: 49.

    Article  Google Scholar 

  19. Al-Olayan EM, Williams GT, Hurd H. Apoptosis in the malaria protozoan, Plasmodium berghei: A possible mechanism for limiting intensity of infection in the mosquito. Int J Parasitol 2002; 32: 1133–1143.

    CAS  PubMed  Google Scholar 

  20. Davis MC, Ward JG, Herrick G, Allis CD. Programmed nuclear death: Apoptotic-like degradation of specific nuclei in conjugating Tetrahymena. Dev Biol 1992; 154: 419–432.

    Article  CAS  PubMed  Google Scholar 

  21. Christensen ST, Chemnitz J, Straarup EM, Kristiansen K, Wheatley DN, Rasmussen L. Staurosporine-induced cell death in Tetrahymena thermophila has mixed characteristics of both apoptotic and autophagic degeneration. Cell Biol Int 1998; 22: 591–598.

    Article  CAS  PubMed  Google Scholar 

  22. Cornillon S, Foa C, Davoust J, Buonavista N, Gross JD, Golstein P. Programmed cell death in Dictyostelium. J Cell Sci 1994;107 (Pt 10): 2691–2704.

    CAS  PubMed  Google Scholar 

  23. Olie RA, Durrieu F, Cornillon S, et al. Apparent caspase independence of programmed cell death in Dictyostelium. Curr Biol 1998; 8: 955–958.

    Article  CAS  PubMed  Google Scholar 

  24. Vardi A, Berman-Frank I, Rozenberg T, Hadas O, Kaplan A, Levine A. Programmed cell death of the dinoflagellate Peridinium gatunense is mediated by CO(2) limitation and oxidative stress. Curr Biol 1999; 9: 1061–1064.

    Article  CAS  PubMed  Google Scholar 

  25. Das M, Mukherjee SB, Shaha C. Hydrogen peroxide induces apoptosis-like death in Leishmania donovani promastigotes. J Cell Sci 2001; 114: 2461–2469.

    CAS  PubMed  Google Scholar 

  26. Mukherjee SB, Das M, Sudhandiran G, Shaha C. Increase in cytosolic Ca2+ levels through the activation of non-selective cation channels induced by oxidative stress causes mitochondrial depolarization leading to apoptosis-like death in Leishmania donovani promastigotes. J Biol Chem 2002; 277: 24717–24727.

    CAS  PubMed  Google Scholar 

  27. Arnoult D, Akarid K, Grodet A, Petit PX, Estaquier J, Ameisen JC. On the evolution of programmed cell death: apoptosis of the unicellular eukaryote Leishmania major involves cysteine proteinase activation and mitochondrion permeabilization. Cell Death Differ 2002; 9: 65–81.

    Article  CAS  PubMed  Google Scholar 

  28. Lee N, Bertholet S, Debrabant A, Muller J, Duncan R, Nakhasi HL. Programmed cell death in the unicellular protozoan parasite Leishmania. Cell Death Differ 2002; 9: 53–64.

    Article  CAS  PubMed  Google Scholar 

  29. Moreira ME, Del Portillo HA, Milder RV, Balanco JM, Barcinski MA. Heat shock induction of apoptosis in promastigotes of the unicellular organism Leishmania (Leishmania) amazonensis. J Cell Physiol 1996; 167: 305–313.

    Article  CAS  PubMed  Google Scholar 

  30. Sudhandiran G, Shaha C. Antimonial-induced increase in intracellular Ca2+ through non-selective cation channels in the host and the parasite is responsible for apoptosis of intracellular Leishmania donovani amastigotes. J Biol Chem 2003; 278 25120–25132.

    Article  CAS  PubMed  Google Scholar 

  31. Paris C, Loiseau PM, Bories C, Breard J. Miltefosine induces apoptosis-like death in Leishmania donovani promastigotes. Antimicrob Agents Chemother 2004; 48: 852–859.

    Article  CAS  PubMed  Google Scholar 

  32. Sereno D, Holzmuller P, Mangot I, Cuny G, Ouaissi A, Lemesre JL. Antimonial-mediated DNA fragmentation in Leishmania infantum amastigotes. Antimicrob Agents Chemother 2001; 45: 2064–2069.

    CAS  PubMed  Google Scholar 

  33. Mehta A, Shaha C. Apoptotic death in Leishmania donovani promastigotes in response to respiratory chain inhibition: complex II inhibition results in increased pentamidine cytotoxicity. J Biol Chem 2004; 279: 11798–11813.

    CAS  PubMed  Google Scholar 

  34. Sen N, Das BB, Ganguly A, et al. Camptothecin induced mitochondrial dysfunction leading to programmed cell death in unicellular hemoflagellate Leishmania donovani. Cell Death Differ 2004; 11: 924–936.

    Article  CAS  PubMed  Google Scholar 

  35. Holzmuller P, Sereno D, Cavaleyra M, et al. Nitric oxide-mediated proteasome-dependent oligonucleosomal DNA fragmentation in Leishmania amazonensis amastigotes. Infect Immun 2002; 70: 3727–3735.

    Article  CAS  PubMed  Google Scholar 

  36. Zangger H, Mottram JC, Fasel N. Cell death in Leishmania induced by stress and differentiation: programmed cell death or necrosis?. Cell Death Differ 2002; 9: 1126–1139.

    Article  CAS  PubMed  Google Scholar 

  37. Ridgley EL, Xiong ZH, Ruben L. Reactive oxygen species activate a Ca2+-dependent cell death pathway in the unicellular organism Trypanosoma brucei brucei. Biochem J 1999; 340: 33–40.

    Article  CAS  PubMed  Google Scholar 

  38. Ouaissi A. Apoptosis-like death in trypanosomatids: Search for putative pathwais and genes involved. Kinetoplastid Biology and Disease 2003; 2.

  39. Lindoso JA, Cotrim PC, Goto H. Apoptosis of Leishmania (Leishmania) chagasi amastigotes in hamsters infected with visceral leishmaniasis. Int J Parasitol 2004; 34: 1–4.

    CAS  PubMed  Google Scholar 

  40. de Freitas Balanco JM, Moreira ME, Bonomo A, et al. Apoptotic mimicry by an obligate intracellular parasite downregulates macrophage microbicidal activity. Curr Biol 2001; 11: 1870–1873.

    CAS  PubMed  Google Scholar 

  41. Tripathi A, Gupta CM. Transbilayer translocation of membrane phosphatidylserine and its role in macrophage invasion in Leishmania promastigotes. Mol Biochem Parasitol 2003; 128: 1–9.

    Article  CAS  PubMed  Google Scholar 

  42. Huynh ML, Fadok VA, Henson PM. Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. J Clin Invest 2002; 109: 41–50.

    Article  CAS  PubMed  Google Scholar 

  43. Saito M, Korsmeyer SJ, Schlesinger PH. BAX-dependent transport of cytochrome c reconstituted in pure liposomes. Nat Cell Biol 2000; 2: 553–555.

    CAS  PubMed  Google Scholar 

  44. Basanez G, Nechushtan A, Drozhinin O, et al. Bax, but not Bcl-xL, decreases the lifetime of planar phospholipid bilayer membranes at subnanomolar concentrations. Proc Natl Acad Sci USA 1999; 96: 5492–5497.

    Article  CAS  PubMed  Google Scholar 

  45. Wei MC, Lindsten T, Mootha VK, et al. tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev 2000; 14: 2060–2071.

    CAS  PubMed  Google Scholar 

  46. Wei MC, Zong WX, Cheng EH, et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 2001; 292: 727–730.

    CAS  PubMed  Google Scholar 

  47. Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2002; 2: 183–192.

    Article  CAS  PubMed  Google Scholar 

  48. Bera A, Singh S, Nagaraj R, Vaidya T. Induction of autophagic cell death in Leishmania donovani by antimicrobial peptides. Mol Biochem Parasitol 2003; 127: 23–35.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Jiménez-Ruiz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alzate, J.F., Barrientos, A.Á., González, V.M. et al. Heat-induced programmed cell death in Leishmania infantum is reverted by Bcl-XL expression. Apoptosis 11, 161–171 (2006). https://doi.org/10.1007/s10495-006-4570-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-4570-z

Keywords

Navigation