Skip to main content

Advertisement

Log in

HMG-CoA reductase and PPARα are involved in clofibrate-induced apoptosis in human keratinocytes

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Contrasting data have been reported on the effects of clofibrate, a PPARα agonist and hypolipidemic drug. The carcinogenic and anti-apoptotic effects have been demonstrated especially in rodents in both “in vivo” and “in vitro” experiments. In contrast, in rat and human hepatoma cell lines, several reports have shown its concentration-dependent pro-apoptotic effect. No epidemiological data exist about its carcinogenetic effect in man. This study shows that clofibrate also induced apoptosis in a human non-tumour cell line, NCTC 2544, which shares the characteristic of proliferation with tumour cells. Both HMG-CoA reductase and PPARα were found to be involved in the signal transduction pathway inducing apoptosis, the former being the principal target: HMG-CoA reductase decreased and PPARα increased. Changes in HMG-CoA reductase expression caused activation of parameters leading to apoptosis via the mitochondria pathway. Clofibrate must be considered a pro-apoptotic molecule at concentrations of 0.25 mM and above: the effect is exercised not only on tumour cells but also on normal human proliferating cells. Clofibrate should thus be regarded as a potential drug to reduce the number of proliferating cells in pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 1990; 347: 647–650.

    Article  Google Scholar 

  2. Goettlicher M, Widmark E, Li Q, Gustafsson JA. Fatty acids activate a chimera of the clofibric acid-activated receptor. Proc Natl Acad Sci USA 1992; 89: 4653–4657.

    CAS  Google Scholar 

  3. Dessi S, Batetta B, Pulisci D, et al. Cholesterol content in tumor tissues is inversely associated with high density lipoprotein cholesterol in serum of patients with gastrointestinal cancer. Cancer 1994; 73: 253–258.

    CAS  PubMed  Google Scholar 

  4. Dessì S, Batetta B, Pani A, et al. Role of cholesterol synthesis and esterification in the growth of CEM and MOLT4 lymphoblastic cells. Biochem J 1997; 321: 603–608.

    PubMed  Google Scholar 

  5. Cho KN, Lee KI. Chemistry and biology of Ras farnesyltransferase. Arch Pharm Res 2002; 25: 759–769.

    CAS  PubMed  Google Scholar 

  6. Silvius JR. Mechanisms of Ras protein targeting in mammalian cells. J Membr Biol 2002; 190: 83–92.

    Article  CAS  PubMed  Google Scholar 

  7. Pascale RM, Simile MM, De Miglio MR, et al. Inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase activity and gene expression by dehydroepiandrosterone in preneoplastic liver nodules. Carcinogenesis 1995; 16: 1537–1542.

    CAS  PubMed  Google Scholar 

  8. Canuto RA, Muzio G, Maggiora M, et al. Apoptosis induced by clofibrate in Yoshida AH-130 hepatoma cells: Role of HMG-CoA reductase. J Lipid Res 2003; 44: 56–64.

    CAS  PubMed  Google Scholar 

  9. Li HY, Appelbaum FR, Willman CL, Zager RA, Banker DE. Cholesterol-modulating agents kill acute myeloid leukemia cells and sensitize them to therapeutics by blocking adaptive cholesterol responses. Blood 2003; 101: 3628–3634.

    CAS  PubMed  Google Scholar 

  10. Nagaraja GM, Kandpal RP. Chromosome 13q12 encoded Rho GTPase activating protein suppresses growth of breast carcinoma cells, and yeast two-hybrid screen shows its interaction with several proteins. Biochem Biophys Res Commun 2004; 313: 654–665.

    Article  CAS  PubMed  Google Scholar 

  11. Vincent L, Chen W, Hong L, et al. Inhibition of endothelial cell migration by cerivastatin, an HMG-CoA reductase inhibitor: contribution to its anti-angiogenic effect. FEBS Lett 2001; 495: 159–166.

    Article  CAS  PubMed  Google Scholar 

  12. Muzio G, Maggiora M, Trombetta A, et al. Mechanisms involved in growth inhibition induced by clofibrate in hepatoma cells. Toxicology 2003; 187: 149–159.

    Article  CAS  PubMed  Google Scholar 

  13. Canuto RA, Trombetta A, Maggiora M, Martinasso G, Muzio G. Human HepG2 hepatoma cells are susceptible to the apoptotic effect of clofibrate. In: “PPARs: from basic science to clinical applications” Second International Simposium Florence, Italy, March 19–22, 2003.

  14. Canuto RA, Ferro M, Salvo RA, et al. Increase in class 2 aldehyde dehydrogenase expression by arachidonic acid in rat hepatoma cells. Biochem J 2001; 357: 811–818.

    Article  CAS  PubMed  Google Scholar 

  15. Di-Poi N, Michalik L, Tan NS, Desvergne B, Wahli W. The anti-apoptotic role of PPARbeta contributes to efficient skin wound healing. J Steroid Biochem Mol Biol 2003; 85: 257–265.

    CAS  PubMed  Google Scholar 

  16. Michalik L, Desvergne B, Wahli W. Peroxisome proliferator-activated receptors beta/delta: Emerging roles for a previously neglected third family member. Curr Opin Lipidol 2003; 14: 129–135.

    Article  CAS  PubMed  Google Scholar 

  17. Braissant O, Wahli W. Differential expression of peroxisome proliferator-activated receptor-alpha, -beta, and-gamma during rat embryonic development. Endocrinology 1998; 139: 2748–2754.

    Article  CAS  PubMed  Google Scholar 

  18. Su CG, Wen X, Bailey ST, et al. A novel therapy for colitis utilizing PPAR-gamma ligands to inhibit the epithelial inflammatory response. J Clin Invest 1999; 104: 383–389.

    CAS  PubMed  Google Scholar 

  19. Hanley K, Jiang Y, Crumrine D, et al. Activators of the nuclear hormone receptors PPARα and FXR accelerate the development of the fetal epidermal permeability barrier. J Clin Invest 1997; 100: 705–712.

    CAS  PubMed  Google Scholar 

  20. Koemueves LG, Hanley K, Man MQ, Elias PM, Williams ML, Feingold KR. Keratinocyte differentiation in hyperproliferative epidermis: Topical application of PPARalpha activators restores tissue homeostasis. J Invest Dermatol 2000a; 115: 361–367.

    Google Scholar 

  21. Koemueves LG, Hanley K, Lefebvre AM, et al. Stimulation of PPARalpha promotes epidermal keratinocyte differentiation in vivo. J Invest Dermatol 2000b; 115: 353–360.

    Google Scholar 

  22. Kuenzli S, Saurat JH. Effect of topical PPARbeta/delta and PPARgamma agonists on plaque psoriasis. A pilot study. Dermatology 2003; 206: 252–256.

    Article  CAS  PubMed  Google Scholar 

  23. Rolfe M, James N, Roberts R. Tumor necrosis factor alpha (TNF α) suppresses apoptosis and induces DNA synthesis in rodent hepatocytes: A mediator of the hepatocarcinogenicity of peroxisome proliferators? Carcinogenesis 1997; 18: 2277–2280.

    Article  CAS  PubMed  Google Scholar 

  24. Goll W, Alexandre E, Viollon-Abadie C, Nicod L, Jaeck D, Richert L. Comparison of the effects of various peroxisome proliferators on peroxisomal enzyme activities, DNA synthesis, and apoptosis in rat and human hepatocyte cultures. Toxicol Appl Pharmacol 1999; 160: 21–32.

    Article  CAS  PubMed  Google Scholar 

  25. Holden P, Hasmall S, James N, et al. Tumor necrosis factor α (TNF α): Role in suppression of apoptosis by the peroxisome proliferator nafenopin. Cell Mol Biol 2000; 46: 29–39.

    CAS  PubMed  Google Scholar 

  26. Roberts RA, James N, Hasmall P, et al. Apoptosis and proliferation in nongenotoxic carcinogenesis: Species differences and role of PPARalpha. Toxicol Lett 2000; 112–113: 49–57.

    PubMed  Google Scholar 

  27. Plant N, Horley N, Dickins M, Hasmall S, Elcombe C, Bell D. The coordinate regulation of DNA synthesis and suppression of apoptosis is differentially regulated by the liver growth agents, phenobarbital and methylclofenapate. Carcinogenesis 1998; 19: 1521–1527.

    CAS  PubMed  Google Scholar 

  28. Perrone C, Shao L, Williams G. Effect of rodent hepatocarcinogenic peroxisome proliferators on fatty acyl CoA oxidase, DNA synthesis and apoptosis in cultured hepatocytes. Toxicol Appl Pharmacol 1998; 150: 277–286.

    Article  CAS  PubMed  Google Scholar 

  29. Canuto RA, Muzio G, Maggiora M, et al. Rapid and extensive lethal action of clofibrate on hepatoma cells in vitro. Cell Death Diff 1997; 4: 224–232.

    CAS  Google Scholar 

  30. Hasmall S, James N, Macdonald N, Soames A, Roberts R. Species differences in response to diethylhexylphthalate: suppression of apoptosis, induction of DNA synthesis and peroxisome proliferator activated receptor alpha-mediated gene expression. Arch Toxicol 2000; 74: 85–91.

    Article  CAS  PubMed  Google Scholar 

  31. Youssef JA, Bouziane M, Badr MZ. Age-dependent effects of nongenotoxic hepatocarcinogens on liver apoptosis in vivo. Mech Ageing Dev 2003; 124: 333–340.

    Article  CAS  PubMed  Google Scholar 

  32. Kornberg A. Lactic dehydrogenase of muscle. In: Colowick SP, Kaplan ND, eds. Methods of Enzymology. Academic Press: New York, 1995; 1: 441–443.

  33. Clemencet M-C, Muzio G, Trombetta A, et al. Differences in cell proliferation in rodent and human hepatic derived cell lines exposed to ciprofibrate. Cancer Lett 2005; 222: 217–226.

    Article  CAS  PubMed  Google Scholar 

  34. Kehrer JP, Biswal SS, La E, et al. Inhibition of peroxisome-proliferator-activated receptor (PPAR)alpha by MK886. Biochem J 2001; 356: 899–906.

    Article  CAS  PubMed  Google Scholar 

  35. Canuto RA, Muzio G, Bonelli G, et al. Peroxisome proliferators induce apoptosis in hepatoma cells. Cancer Detect Preven 1998; 22: 357–366.

    CAS  Google Scholar 

  36. Passilly P, Jannin B, Hassell SJ, Latruffe N. Human HepG2 and rat Fao hepatic-derived cell lines show different responses to ciprofibrate, a peroxisome proliferator: Analysis by flow cytometry. Exp Cell Res 1996; 223: 436–442.

    Article  CAS  PubMed  Google Scholar 

  37. Goll V, Viollon-Abadie C, Nicod L, Richert L. Peroxisome proliferators induce apoptosis and decrease DNA synthesis in hepatoma cell lines. Hum Exp Toxicol 2000; 19: 193–202.

    Article  CAS  PubMed  Google Scholar 

  38. Kubota T, Yano T, Fujisaki K, Itoh Y, Oishi R. Fenofibrate induces apoptotic injury in cultured human hepatocytes by inhibiting phosphorylation of Akt. Apoptosis 2005;10: 349–358.

    Article  CAS  PubMed  Google Scholar 

  39. Roberts RA, Chevalier S, Hasmall SC, James NH, Cosulich SC, Macdonald N. PPAR alpha and the regulation of cell division and apoptosis. Toxicology 2002; 181–182: 167–170.

    PubMed  Google Scholar 

  40. Rivier M, Castiel I, Safonova I, Ailhaud G, Michel S. Peroxisome proliferator-activated receptor-alpha enhances lipid metabolism in a skin equivalent model. J Invest Dermatol 2000; 114: 681–687.

    Article  CAS  PubMed  Google Scholar 

  41. Maggiora M, Bologna M, Ceru MP, et al. An overview of the effect of linoleic and conjugated-linoleic acids on the growth of several human tumor cell lines. Int J Cancer 2004; 112: 909–919.

    Article  CAS  PubMed  Google Scholar 

  42. Cherkaoui Malki M, Lone YC, Corral-Debrinski M, Latruffe N. Differential proto-oncogene mRNA expression from rats treated with peroxisome proliferators. Biochem Biophys Res Commun 1990; 173: 855–861.

    CAS  PubMed  Google Scholar 

  43. Bardot O, Clemencet M-C, Cherkaoui Malki M, Latruffe N. Delayed effect of ciprofibrate on rat liver peroxisomal properties and proto-oncogene expression. Biochem Pharmacol 1995; 50: 1001–1006.

    Article  CAS  PubMed  Google Scholar 

  44. Miller RT, Cattley RC, Marsman DS, Lyght O, Popp JA. TGF alpha differentially expressed in liver foci induced by diethylnitrosamine initiation and peroxisome proliferator promotion. Carcinogenesis 1995; 16: 77–82.

    CAS  PubMed  Google Scholar 

  45. Peters JM, Hennuyers N, Staels B, et al. Alterations in lipoprotein metabolism in peroxisome proliferator-activated receptor alpha deficient mice. J Biol Chem 1997; 272: 27307–27312.

    CAS  PubMed  Google Scholar 

  46. Cherkaoui Malki M, Passilly P, Jannin B, Clemencet M-C, Latruffe N. Carcinogenic aspect of xenobiotic molecules belonging to the peroxisome proliferator family. Int J Mol Med 1999; 3: 163–168.

    CAS  PubMed  Google Scholar 

  47. Lutz W, Fulda S, Jeremias I, Debatin KM, Schwab M. MycN and IFNgamma cooperate in apoptosis of human neuroblastoma cells. Oncogene 1998; 17: 339–346.

    Article  CAS  PubMed  Google Scholar 

  48. Reuveny M, Heller H, Bengal E. RhoA controls myoblast survival by inducing the phosphatidylinositol 3-kinase-Akt signaling pathway. FEBS Lett 2004; 569: 129–134.

    Article  CAS  PubMed  Google Scholar 

  49. Small GW, Somasundaram S, Moore DT, Shi YY, Orlowski RZ. Repression of mitogen-activated protein kinase (MAPK) phosphatase-1 by anthracyclines contributes to their antiapoptotic activation of p44/42-MAPK. J Pharmacol Exp Ther 2003; 307: 861–869.

    Article  CAS  PubMed  Google Scholar 

  50. Kandel ES, Hay N. The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB. Exp Cell Res 1999; 253: 210–229.

    Article  CAS  PubMed  Google Scholar 

  51. Yin KJ, Lee JM, Chen H, Xu J, Hsu CY. Abeta(25–35) alters Akt activity, resulting in Bad translocation and mitochondrial dysfunction in cerebrovascular endothelial cells. J Cereb Blood Flow Metab 2005; 25: 1445–1455.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Canuto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muzio, G., Martinasso, G., Trombetta, A. et al. HMG-CoA reductase and PPARα are involved in clofibrate-induced apoptosis in human keratinocytes. Apoptosis 11, 265–275 (2006). https://doi.org/10.1007/s10495-006-3559-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-3559-y

Keywords

Navigation