Skip to main content
Log in

Sulindac-derived reactive oxygen species induce apoptosis of human multiple myeloma cells via p38 mitogen activated protein kinase-induced mitochondrial dysfunction

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Non-steroidal anti-inflammatory drugs are well known to induce apoptosis of cancer cells independent of their ability to inhibit cyclooxygenase-2, but the molecular mechanism for this effect has not yet been fully elucidated. The purpose of this study was to elucidate the potential signaling components underlying sulindac-induced apoptosis in human multiple myeloma (MM) cells. We found that sulindac induces apoptosis by promoting ROS generation, accompanied by opening of mitochondrial permeability transition pores, release of cytochrome c and apoptosis inducing factor from mitochondria, followed by caspase activation. Bcl-2 cleavage and down-regulation of the inhibitor of apoptosis proteins (IAPs) family including cIAP-1/2, XIAP, and survivin, occurred downstream of ROS production during sulindac-induced apoptosis. Forced expression of survivin and Bcl-2 blocked sulindac-induced apoptosis. Most importantly, sulindac-derived ROS activated p38 mitogen-activated protein kinase and p53. SB203580, a p38 mitogen-activated protein kinase inhibitor, and RNA inhibition of p53 inhibited the sulindac-induced apoptosis. Furthermore, p53, Bax, and Bak accumulated in mitochondria during sulindac-induced apoptosis. All of these events were significantly suppressed by SB203580. Our results demonstrate a novel mechanism of sulindac-induced apoptosis in human MM cells, namely, accumulation of p53, Bax, and Bak in mitochondria mediated by p38 MAPK activation downstream of ROS production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smith A, Wisloff F, Samson D, UK Myeloma Forum, Nordic Myeloma Study Group, British Committee for Standards in Haematology (2006) Guidelines on the diagnosis and management of multiple myeloma 2005. Br J Haematol 132: 410–51

    Article  PubMed  Google Scholar 

  2. Wada T, Penninger JM (2004) Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23:2838–849

    Article  CAS  PubMed  Google Scholar 

  3. She QB, Chen N, Dong Z (2000) ERKs and p38 kinase phosphorylate p53 protein at serine 15 in response to UV radiation. J Biol Chem 275:20444–0449

    Article  CAS  PubMed  Google Scholar 

  4. Kwon YW, Ueda S, Ueno M, Yodoi J, Masutani H (2002) Mechanism of p53-dependent apoptosis induced by 3-methylcholanthrene: involvement of p53 phosphorylation and p38 MAPK. J Biol Chem 277:1837–844

    Article  CAS  PubMed  Google Scholar 

  5. Giardiello FM, Hamilton SR, Krush AJ, Piantadosi S, Hylind LM, Celano P, et al (1993) Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis. N Engl J Med 328:1313–316

    Article  CAS  PubMed  Google Scholar 

  6. Rao CV, Rivenson A, Simi B, Zang E, Kelloff G, Steele V, et al (1995) Chemoprevention of colon carcinogenesis by sulindac, a nonsteroidal anti-inflammatory agent. Cancer Res 55:1464–472

    CAS  PubMed  Google Scholar 

  7. Beazer-Barclay Y, Levy DB, Moser AR, Dove WF, Hamilton SR, Vogelstein B, et al (1996) Sulindac suppresses tumorigenesis in the Min mouse. Carcinogenesis 17:1757–760

    Article  CAS  PubMed  Google Scholar 

  8. Lim JT, Piazza GA, Han EK, Delohery TM, Li H, Finn TS, et al (1999) Sulindac derivatives inhibit growth and induce apoptosis in human prostate cancer cell lines. Biochem Pharmacol 58:1097–107

    Article  CAS  PubMed  Google Scholar 

  9. Chan TA, Morin PJ, Vogelstein B, Kinzler KW (1998) Mechanisms underlying nonsteroidal antiinflammatory drug-mediated apoptosis. Proc Natl Acad Sci USA 95:681–86

    Article  CAS  PubMed  Google Scholar 

  10. Shiff SJ, Qiao L, Tsai LL, Rigas B (1995) Sulindac sulfide, an aspirin-like compound, inhibits proliferation, causes cell cycle quiescence, and induces apoptosis in HT-29 colon adenocarcinoma cells. J Clin Invest 96:491–03

    Article  CAS  PubMed  Google Scholar 

  11. Zhang L, Yu J, Park BH, Kinzler KW, Vogelstein B (2000) Role of BAX in the apoptotic response to anticancer agents. Science 290:989–92

    Article  CAS  PubMed  Google Scholar 

  12. Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192: 1–5

    Article  CAS  PubMed  Google Scholar 

  13. Jin HO, Park IC, An S, Lee HC, Woo SH, Hong YJ, et al (2006) Up-regulation of Bak and Bim via JNK downstream pathway in the response to nitric oxide in human glioblastoma cells. J Cell Physiol 206(2):477–86

    Article  CAS  PubMed  Google Scholar 

  14. Woo SH, Park IC, Park MJ, Lee HC, Lee SJ, Chun YJ, et al (2002) Arsenic trioxide induces apoptosis through a reactive oxygen species-dependent pathway and loss of mitochondrial membrane potential in HeLa cells. Int J Oncol 21(1):57–3

    CAS  PubMed  Google Scholar 

  15. Wang Z, Sampath J, Fukuda S, Pelus LM (2005) Disruption of the inhibitor of apoptosis protein survivin sensitizes Bcr-abl-positive cells to STI571-induced apoptosis. Cancer Res 65(18): 8224–232

    Article  CAS  PubMed  Google Scholar 

  16. Keum YS, Yu S, Chang PP, Yuan X, Kim JH, Xu C, et al (2006) Mechanism of action of sulforaphane: Inhibition of p38 mitogen-activated protein kinase isoforms contributing to the induction of antioxidant response element-mediated heme oxygenase-1 in human hepatoma HepG2 cells. Cancer Res 66(17): 8804–813

    Article  CAS  PubMed  Google Scholar 

  17. Zhang T, Fields JZ, Ehrlich SM, Boman BM (2004) The chemopreventive agent sulindac attenuates expression of the antiapoptotic protein survivin in colorectal carcinoma cells. J Pharmacol Exp Ther 308:434–37

    Article  CAS  PubMed  Google Scholar 

  18. Cory S, Adams JM (2002) The Bcl-2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2:647–56

    Article  CAS  PubMed  Google Scholar 

  19. Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6:513–19

    Article  CAS  PubMed  Google Scholar 

  20. Kirkin V, Joos S, Zornig M (2004) The role of Bcl-2 family members in tumorigenesis. Biochim Biophys Acta 1644:229–49

    Article  CAS  PubMed  Google Scholar 

  21. Sansome C, Zaika A, Marchenko ND, Moll UM (2001) Hypoxia death stimulus induces translocation of p53 protein to mitochondria. Detection by immunofluorescence on whole cells. FEBS Lett 488:110–15

    Article  CAS  PubMed  Google Scholar 

  22. Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P, et al (2003) p53 has a direct apoptogenic role at the mitochondria. Moll Cell 11:577–90

    Article  CAS  Google Scholar 

  23. Marchenko ND, Zaika A, Moll UM (2000) Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J Biol Chem 275:16202–6212

    Article  CAS  PubMed  Google Scholar 

  24. Komarov PG, Komarova EA, Kondratov RV, Christov-Tselkov K, Coon JS, Chernov MV, et al (1999) A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285:1733–737

    Article  CAS  PubMed  Google Scholar 

  25. Soh JW, Mao Y, Kim MG, Pamukcu R, Li H, Piazza GA, et al (2000) Cyclic GMP mediates apoptosis induced by sulindac derivatives via activation of c-Jun NH2-terminal kinase 1. Clin Cancer Res 6:4136–141

    CAS  PubMed  Google Scholar 

  26. Li H, Liu L, David ML, Whitehead CM, Chen M, Fetter JR, et al (2002) Pro-apoptotic actions of exisulind and CP461 in SW480 colon tumor cells involve beta-catenin and cyclin D1 down-regulation. Biochem Pharmacol 64:1325–336

    Article  CAS  PubMed  Google Scholar 

  27. Huang Y, He Q, Hillman MJ, Rong R, Sheikh MS (2001) Sulindac sulfide-induced apoptosis involves death receptor 5 and the caspase 8-dependent pathway in human colon and prostate cancer cells. Cancer Res 61:6918–924

    CAS  PubMed  Google Scholar 

  28. Rice PL, Beard KS, Driggers LJ, Ahnen DJ (2004) Inhibition of extracellular-signal regulated kinases 1/2 is required for apoptosis of human colon cancer cells in vitro by sulindac metabolites. Cancer Res 64:8148–151

    Article  CAS  PubMed  Google Scholar 

  29. Zamzami N, Marchetti P, Castedo M, Decaudin D, Macho A, Hirsch T, et al (1995) Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med 182: 367–77

    Article  CAS  PubMed  Google Scholar 

  30. Pervaiz S, Clement MV (2002) A permissive apoptotic environment: Function of a decrease in intracellular superoxide anion and cytosolic acidification. Biochem Biophys Res Comm 290:1145–150

    Article  CAS  PubMed  Google Scholar 

  31. Salvesen GS, Duckett CS (2002) IAP proteins: blocking the road to death’s door. Nat Rev Mol Cell Biol 3:401–10

    Article  CAS  PubMed  Google Scholar 

  32. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, et al (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129–232

    Article  CAS  PubMed  Google Scholar 

  33. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275:1132–136

    Article  CAS  PubMed  Google Scholar 

  34. Bode AM, Dong Z (2004) Targeting signal transduction pathways by chemopreventive agents. Mutat Res 555:33–1

    CAS  PubMed  Google Scholar 

  35. Hu W, Kavanagh JJ (2003) Anticancer therapy targeting the apoptotic pathway. Lancet Oncol 4(12):721–29

    Article  CAS  PubMed  Google Scholar 

  36. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–312

    Article  CAS  PubMed  Google Scholar 

  37. Li LY, Luo X, Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95–9

    Article  CAS  PubMed  Google Scholar 

  38. Gross A, McDonnell JM, Korsmeyer SJ (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899–911

    Article  CAS  PubMed  Google Scholar 

  39. Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ (1990) Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348:334–36

    Article  CAS  PubMed  Google Scholar 

  40. Reed JC (1997) Bcl-2 family proteins: regulators of apoptosis and chemoresistance in hematologicmalignancies. Semin Hematol 34:9–9

    CAS  PubMed  Google Scholar 

  41. Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–326

    Article  CAS  PubMed  Google Scholar 

  42. Chittenden T, Harrington EA, O’Connor R, Flemington C, Lutz RJ, Evan GI, et al (1995) Induction of apoptosis by the Bcl-2 homologue Bak. Nature 374:733–36

    Article  CAS  PubMed  Google Scholar 

  43. Kiefer MC, Brauer MJ, Powers VC, Wu JJ, Umansky SR, Tomei LD, et al (1995) Modulation of apoptosis by the widely distributed Bcl-2 homologue Bak. Nature 374:736–39

    Article  CAS  PubMed  Google Scholar 

  44. Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, bax, that accelerates programmed cell death. Cell 74:609–19

    Article  CAS  PubMed  Google Scholar 

  45. Kondo S, Shinomura Y, Miyazaki Y, Kiyohara T, Tsutsui S, Kitamura S, et al (2000) Mutations of the bak gene in human gastric and colorectal cancers. Cancer Res 60:4328–330

    CAS  PubMed  Google Scholar 

  46. Ionov Y, Yamamoto H, Krajewski S, Reed JC, Perucho M (2000) Mutational inactivation of the proapoptotic gene BAX confers selective advantage during tumor clonal evolution. Proc Natl Acad Sci USA 97:10872–0877

    Article  CAS  PubMed  Google Scholar 

  47. LeBlanc H, Lawrence D, Varfolomeev E, Totpal K, Morlan J, Schow P, et al (2002) Tumor-cell resistance to death receptor–induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax. Nat Med 8: 274–81

    Article  CAS  PubMed  Google Scholar 

  48. Ichijo H, Nishida E, Irie K, Saitoh M, Moriguchi T, Takagi M, et al (1997) Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 275:90–4

    Article  CAS  PubMed  Google Scholar 

  49. Unger T, Sionov RV, Moallem E, Yee CL, Howley PM, Oren M, et al (1999) Mutations in serines 15 and 20 of human p53 impair its apoptotic activity. Oncogene 18:3205–212

    Article  CAS  PubMed  Google Scholar 

  50. Meek DW (1998) Multisite phosphorylation and the signals at p53. Cell Signal 10:159–66

    Article  CAS  PubMed  Google Scholar 

  51. She QB, Chen NY, Dong Z (2000) ERKs and p38 kinase phosphorylate p53 protein at serine 15 in response to UV radiation. J Biol Chem 275:20444–0449

    Article  CAS  PubMed  Google Scholar 

  52. Sje QB, Bode AM, Ma WY, Chen NY, Dong Z (2001) Resveratrol-induced activation of p53 and apoptosis is mediated by extracellular-signalregulated protein kinase and p38 kinase. Cancer Res 61:1604–610

    Google Scholar 

  53. Shieh SY, Ikeda M, Taya Y, Prives C (1997) DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91:325–34

    Article  CAS  PubMed  Google Scholar 

  54. Tibbetts RS, Brumbaugh KM, Williams JM, Sarkaria JN, Cliby WA, Shieh SY, et al (1999) A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev 13: 152–57

    Article  CAS  PubMed  Google Scholar 

  55. Hu MC, Wiu WR, Wang YP (1997) JNK1, JNK2, JNK3 are p53 N-terminal serine 34 kinase. Oncogene 15:2277–287

    Article  CAS  PubMed  Google Scholar 

  56. Huang C, Ma WY, Maxiner A, Sun Y, Nel A (1999) p38 kinase mediates UVinduced phosphorylation of p53 protein at serine 389. J Biol Chem 274:12229–2235

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Chul Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seo, SK., Lee, HC., Woo, SH. et al. Sulindac-derived reactive oxygen species induce apoptosis of human multiple myeloma cells via p38 mitogen activated protein kinase-induced mitochondrial dysfunction. Apoptosis 12, 195–209 (2007). https://doi.org/10.1007/s10495-006-0527-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-0527-5

Keywords

Navigation