Skip to main content
Log in

Zinc induces ERK-dependent cell death through a specific Ras isoform

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The effect of Zn on p53-independent cell death was examined in IIC9 embryonic fibroblasts. Despite the fact that these cells are p53-minus, Zn-mediated death occurs via an apoptotic mechanism. Death is facilitated by the presence of the Zn ionophore, pyrithione, indicating that intracellular Zn initiates the death response. Our investigations of the mechanism of Zn action demonstrate that Zn induces the death of IIC9 cells in a manner that is ERK-dependent. Expression of dn-(dominant negative)Ras attenuates ERK1/2 activation by Zn, and correspondingly reduces its cytotoxic effects. Raf-RBD pull-down experiments confirm that Zn treatment activates Ras and identified H-Ras as the specific isoform activated. This contrasts the activation of N-Ras that occurs when IIC9 cells are stimulated with thrombin. Thus, although the prolonged activation of the Ras/ERK pathway by Zn is similar to that seen when induced by mitogen, the distinguishing feature appears to be the isoform specificity of Ras activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frederickson CJ, Suh SW, Silva D, Frederickson CJ, Thompson RB (2000) Importance of zinc in the central nervous system: the zinc-containing neuron. J Nutr 130:1471S–1483S

    PubMed  Google Scholar 

  2. Cuajungco MP, Lees GJ (1997) Zinc metabolism in the brain: relevance to human neurodegenerative disorders. Neurobiol Dis 4:137–169

    Article  PubMed  CAS  Google Scholar 

  3. Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73:79–118

    PubMed  CAS  Google Scholar 

  4. Clegg MS, Hanna LA, Niles BJ, Momma TY, Keen CL (2005) Zinc deficiency-induced cell death. IUBMB Life 57:661–669

    Article  PubMed  CAS  Google Scholar 

  5. Prasad AS (1983) Zinc deficiency in human subjects. Prog Clin Biol Res 129:1–33

    PubMed  CAS  Google Scholar 

  6. Prasad AS (1985) Clinical, endocrinological and biochemical effects of zinc deficiency. Clin Endocrinol Metab 14:567–589

    Article  PubMed  CAS  Google Scholar 

  7. Mocchegiani E, Bertoni-Freddari C, Marcellini F, Malavolta M (2005) Brain, aging and neurodegeneration: role of zinc ion availability. Prog Neurobiol 75:367–390

    Article  PubMed  CAS  Google Scholar 

  8. Sever LE (1973) Zinc deficiency in man. Lancet 1:887

    Article  PubMed  CAS  Google Scholar 

  9. Villa EI, Cunha Ferreira RM (1985) Zinc, pregnancy and parturition. Acta Paediatr Scand Suppl 319:150–157

    Google Scholar 

  10. Assaf SY, Chung SH (1984) Release of endogenous Zn2+ from brain tissue during activity. Nature 308:734–736

    Article  PubMed  CAS  Google Scholar 

  11. Choi DW, Koh JY (1998) Zinc and brain injury. Annu Rev Neurosci 21:347–375

    Article  PubMed  CAS  Google Scholar 

  12. Chang I, Cho N, Koh JY, Lee MS (2003) Pyruvate inhibits zinc-mediated pancreatic islet cell death and diabetes. Diabetologia 46:1220–1227

    Article  PubMed  CAS  Google Scholar 

  13. Kim BJ, Kim YH, Kim S, Kim JW, Koh JY, Oh SH, Lee MK, Kim KW, Lee MS (2000) Zinc as a paracrine effector in pancreatic islet cell death. Diabetes 49:367–372

    PubMed  CAS  Google Scholar 

  14. Rodriguez IR, Alam S, Lee JW (2004) Cytotoxicity of oxidized low-density lipoprotein in cultured RPE cells is dependent on the formation of 7-ketocholesterol. Invest Ophthalmol Vis Sci 45:2830–2837

    Article  PubMed  Google Scholar 

  15. Feng P, Liang JY, Li TL, Guan ZX, Zou J, Franklin R, Costello LC (2000) Zinc induces mitochondria apoptogenesis in prostate cells. Mol Urol 4:31–36

    PubMed  CAS  Google Scholar 

  16. Lobner D, Canzoniero LM, Manzerra P, Gottron F, Ying H, Knudson M, Tian M, Dugan LL, Kerchner GA, Sheline CT, Korsmeyer SJ, Choi DW (2000) Zinc-induced neuronal death in cortical neurons. Cell Mol Biol (Noisy-le-grand) 46:797–806

    CAS  Google Scholar 

  17. Kondoh M, Tasaki E, Araragi S, Takiguchi M, Higashimoto M, Watanabe Y, Sato M (2002) Requirement of caspase and p38MAPK activation in zinc-induced apoptosis in human leukemia HL-60 cells. Eur J Biochem 269:6204–6211

    Article  PubMed  CAS  Google Scholar 

  18. Seo SR, Chong SA, Lee SI, Sung JY, Ahn YS, Chung KC, Seo JT (2001) Zn2+-induced ERK activation mediated by reactive oxygen species causes cell death in differentiated PC12 cells. J Neurochem 78:600–610

    Article  PubMed  CAS  Google Scholar 

  19. Cullen PJ, Lockyer PJ (2002) Integration of calcium and Ras signalling. Nat Rev Mol Cell Biol 3:339–348

    Article  PubMed  CAS  Google Scholar 

  20. Hancock JF (2003) Ras proteins: different signals from different locations. Nat Rev Mol Cell Biol 4:373–384

    Article  PubMed  CAS  Google Scholar 

  21. Malumbres M, Barbacid M (2003) RAS oncogenes: the first 30 years. Nat Rev Cancer 3:459–465

    Article  PubMed  CAS  Google Scholar 

  22. Vojtek AB, Der CJ (1998) Increasing complexity of the Ras signaling pathway. J Biol Chem 273:19925–19928

    Article  PubMed  CAS  Google Scholar 

  23. Colucci-D'Amato L, Perrone-Capano C, di Porzio U (2003) Chronic activation of ERK and neurodegenerative diseases. Bioessays 25:1085–1095

    Article  PubMed  CAS  Google Scholar 

  24. Wada T, Penninger JM (2004) Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23:2838–2849

    Article  PubMed  CAS  Google Scholar 

  25. Subramaniam S, Zirrgiebel U, Bohlen Und HO, Strelau J, Laliberte C, Kaplan DR, Unsicker K (2004) ERK activation promotes neuronal degeneration predominantly through plasma membrane damage and independently of caspase-3. J Cell Biol 165:357–369

    Article  PubMed  CAS  Google Scholar 

  26. Wang X, Martindale JL, Holbrook NJ (2000) Requirement for ERK activation in cisplatin-induced apoptosis. J Biol Chem 275:39435–39443

    Article  PubMed  CAS  Google Scholar 

  27. Nguyen TT, Tran E, Nguyen TH, Do PT, Huynh TH, Huynh H (2004) The role of activated MEK-ERK pathway in quercetin-induced growth inhibition and apoptosis in A549 lung cancer cells. Carcinogenesis 25:647–659

    Article  PubMed  CAS  Google Scholar 

  28. Zhu L, Yu X, Akatsuka Y, Cooper JA, Anasetti C (1999) Role of mitogen-activated protein kinases in activation-induced apoptosis of T cells. Immunology 97:26–35

    Article  PubMed  CAS  Google Scholar 

  29. Brown L, Benchimol S (2006) The involvement of MAPK signaling pathways in determining the cellular response to p53 activation: cell cycle arrest or apoptosis. J Biol Chem 281:3832–3840

    Article  PubMed  CAS  Google Scholar 

  30. Jung JW, Cho SD, Ahn NS, Yang SR, Park JS, Jo EH, Hwang JW, Jung JY, Kim SH, Kang KS, Lee YS (2005) Ras/MAP kinase pathways are involved in Ras specific apoptosis induced by sodium butyrate. Cancer Lett 225:199–206

    Article  PubMed  CAS  Google Scholar 

  31. Li DW, Liu JP, Mao YW, Xiang H, Wang J, Ma WY, Dong Z, Pike HM, Brown RE, Reed JC (2005) Calcium-activated RAF/MEK/ERK signaling pathway mediates p53-dependent apoptosis and is abrogated by alpha B-crystallin through inhibition of RAS activation. Mol Biol Cell 16:4437–4453

    Article  PubMed  CAS  Google Scholar 

  32. Okuno T, Matsuoka M, Sumizawa T, Igisu H (2005) Involvement of the extracellular signal-regulated protein kinase pathway in phosphorylation of p53 protein and exerting cytotoxicity in human neuroblastoma cells (SH-SY5Y) exposed to acrylamide. Arch Toxicol 1–8

  33. Persons DL, Yazlovitskaya EM, Pelling JC (2000) Effect of extracellular signal-regulated kinase on p53 accumulation in response to cisplatin. J Biol Chem 275:35778–35785

    Article  PubMed  CAS  Google Scholar 

  34. Wu GS (2004) The functional interactions between the p53 and MAPK signaling pathways. Cancer Biol Ther 3:156–161

    PubMed  CAS  Google Scholar 

  35. Yeh PY, Chuang SE, Yeh KH, Song YC, Chang LL, Cheng AL (2004) Phosphorylation of p53 on Thr55 by ERK2 is necessary for doxorubicin-induced p53 activation and cell death. Oncogene 23:3580–3588

    Article  PubMed  CAS  Google Scholar 

  36. Misko TP, Highkin MK, Veenhuizen AW, Manning PT, Stern MK, Currie MG, Salvemini D (1998) Characterization of the cytoprotective action of peroxynitrite decomposition catalysts. J Biol Chem 273:15646–15653

    Article  PubMed  CAS  Google Scholar 

  37. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  PubMed  CAS  Google Scholar 

  38. Konca K, Lankoff A, Banasik A, Lisowska H, Kuszewski T, Gozdz S, Koza Z, Wojcik A (2003) A cross-platform public domain PC image-analysis program for the comet assay. Mutat Res 534:15–20

    PubMed  CAS  Google Scholar 

  39. Fairbairn DW, Olive PL, O'Neill KL (1995) The comet assay: a comprehensive review. Mutat Res 339:37–59

    PubMed  CAS  Google Scholar 

  40. Goel R, Phillips-Mason PJ, Gardner A, Raben DM, Baldassare JJ (2004) Alpha-thrombin-mediated phosphatidylinositol 3-kinase activation through release of Gbetagamma dimers from Galphaq and Galphai2. J Biol Chem 279:6701–6710

    Article  PubMed  CAS  Google Scholar 

  41. Samet JM, Dewar BJ, Wu W, Graves LM (2003) Mechanisms of Zn(2+)-induced signal initiation through the epidermal growth factor receptor. Toxicol Appl Pharmacol 191:86–93

    Article  PubMed  CAS  Google Scholar 

  42. Azriel-Tamir H, Sharir H, Schwartz B, Hershfinkel M (2004) Extracellular zinc triggers ERK-dependent activation of Na+/H+ exchange in colonocytes mediated by the zinc-sensing receptor. J Biol Chem 279:51804–51816

    Article  PubMed  CAS  Google Scholar 

  43. Perfettini JL, Kroemer RT, Kroemer G (2004) Fatal liaisons of p53 with Bax and Bak. Nat Cell Biol 6:386–388

    Article  PubMed  CAS  Google Scholar 

  44. Robles AI, Bemmels NA, Foraker AB, Harris CC (2001) APAF-1 is a transcriptional target of p53 in DNA damage-induced apoptosis. Cancer Res 61:6660–6664

    PubMed  CAS  Google Scholar 

  45. Schuler M, Green DR (2001) Mechanisms of p53-dependent apoptosis. Biochem Soc Trans 29:684–688

    Article  PubMed  CAS  Google Scholar 

  46. Culmsee C, Mattson MP (2005) p53 in neuronal apoptosis. Biochem Biophys Res Commun 331:761–777

    Article  PubMed  CAS  Google Scholar 

  47. Isoldi MC, Visconti MA, Lauro Castrucci AM (2005) Anti-cancer drugs: molecular mechanisms of action. Mini Rev Med Chem 5:685–695

    Article  PubMed  CAS  Google Scholar 

  48. MacPherson D, Kim J, Kim T, Rhee BK, Van Oostrom CT, DiTullio RA, Venere M, Halazonetis TD, Bronson R, De Vries A, Fleming M, Jacks T (2004) Defective apoptosis and B-cell lymphomas in mice with p53 point mutation at Ser 23. EMBO J 23:3689–3699

    Article  PubMed  CAS  Google Scholar 

  49. McDermott U, Longley DB, Galligan L, Allen W, Wilson T, Johnston PG (2005) Effect of p53 status and STAT1 on chemotherapy-induced, Fas-mediated apoptosis in colorectal cancer. Cancer Res 65:8951–8960

    Article  PubMed  CAS  Google Scholar 

  50. Soussi T (2003) p53 mutations and resistance to chemotherapy: a stab in the back for p73. Cancer Cell 3:303–305

    Article  PubMed  CAS  Google Scholar 

  51. Soussi T, Lozano G (2005). p53 mutation heterogeneity in cancer. Biochem Biophys Res Commun 331:834–842

    Article  PubMed  CAS  Google Scholar 

  52. Bataller M, Portugal J (2005) Apoptosis and cell recovery in response to oxidative stress in p53-deficient prostate carcinoma cells. Arch Biochem Biophys 437:151–158

    Article  PubMed  CAS  Google Scholar 

  53. Erdal H, Berndtsson M, Castro J, Brunk U, Shoshan MC, Linder S (2005) Induction of lysosomal membrane permeabilization by compounds that activate p53-independent apoptosis. Proc Natl Acad Sci USA 102:192–197

    Article  PubMed  CAS  Google Scholar 

  54. Cheng J, Weber JD, Baldassare JJ, Raben DM (1997) Ablation of Go alpha-subunit results in a transformed phenotype and constitutively active phosphatidylcholine-specific phospholipase C. J Biol Chem 272:17312–17319

    Article  PubMed  CAS  Google Scholar 

  55. Weber JD, Cheng J, Raben DM, Gardner A, Baldassare JJ (1997) Ablation of Goalpha overrides G1 restriction point control through Ras/ERK/cyclin D1-CDK activities. J Biol Chem 272:17320–17326

    Article  PubMed  CAS  Google Scholar 

  56. Weber JD, Hu W, Jefcoat SC, Jr, Raben DM, Baldassare JJ (1997) Ras-stimulated extracellular signal-related kinase 1 and RhoA activities coordinate platelet-derived growth factor-induced G1 progression through the independent regulation of cyclin D1 and p27. J Biol Chem 272:32966–32971

    Article  PubMed  CAS  Google Scholar 

  57. Matallanas D, Sanz-Moreno V, Arozarena I, Calvo F, Agudo-Ibanez L, Santos E, Berciano MT, Crespo P (2006) Distinct utilization of effectors and biological outcomes resulting from site-specific Ras activation: Ras functions in lipid rafts and golgi complex are dispensable for proliferation and transformation. Mol Cell Biol 26:100–116

    Article  PubMed  CAS  Google Scholar 

  58. Bhat NR, Zhang P (1999) Hydrogen peroxide activation of multiple mitogen-activated protein kinases in an oligodendrocyte cell line: role of extracellular signal-regulated kinase in hydrogen peroxide-induced cell death. J Neurochem 72:112–119

    Article  PubMed  CAS  Google Scholar 

  59. Aizenman E, Stout AK, Hartnett KA, Dineley KE, McLaughlin B, Reynolds IJ (2000) Induction of neuronal apoptosis by thiol oxidation: putative role of intracellular zinc release. J Neurochem 75:1878–1888

    Article  PubMed  CAS  Google Scholar 

  60. Pouyssegur J, Volmat V, Lenormand P (2002) Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling. Biochem Pharmacol 64:755–763

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudette Klein.

Additional information

This work was supported by National Institute of Health Grants DK-52194 and AI-44458 (to J.A.C). P.L Blackwell was supported by an American Heart Association Grant in Aid 0555574Z (to C.K), K.J. Hughes was supported by the National Institute of Health Training Grant (GM008306) and Kimberly Creach was supported by St. Louis University Medical School Summer Research Fellowship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, C., Creach, K., Irintcheva, V. et al. Zinc induces ERK-dependent cell death through a specific Ras isoform. Apoptosis 11, 1933–1944 (2006). https://doi.org/10.1007/s10495-006-0089-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-0089-6

Keywords

Navigation