Skip to main content
Log in

Rapid cold-hardening protects Drosophila melanogaster from cold-induced apoptosis

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The rapid cold-hardening (RCH) response increases the cold tolerance of insects by protecting against non-freezing, cold-shock injury. Apoptosis, or programmed cell death, plays important roles in development and the elimination of sub-lethally damaged cells. Our objectives were to determine whether apoptosis plays a role in cold-shock injury and, if so, whether the RCH response protects against cold-induced apoptosis in Drosophila melanogaster. The present study confirmed that RCH increased the cold tolerance of the adults at the organismal level. No flies in the cold-shocked group survived direct exposure to ‒7°C for 2 h, whereas significantly more flies in the RCH group survived exposure to ‒7°C for 2 h after a 2-h exposure to 5°C. We used a TUNEL assay to detect and quantify apoptotic cell death in five groups of flies including control, cold-shocked, RCH, heat-shocked (37.5°C, 30 min), and frozen (‒20°C, 24 h) and found that apoptosis was induced by cold shock, heat shock, and freezing. The RCH treatment significantly improved cell viability by 38% compared to the cold-shocked group. Cold shock-induced DNA fragmentation shown by electrophoresis provided further evidence for apoptosis. SDS-PAGE analysis revealed an RCH-specific protein band with molecular mass of ∼150 kDa. Western-blotting revealed three proteins that play key roles in the apoptotic pathway: caspase-9-like (apoptotic initiator), caspase-3-like (apoptotic executioner) and Bcl-2 (anti-apoptotic protein). Consequently, the results of this study support the hypothesis that the RCH response protects against cold-shock-induced apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Apaf-1:

apoptosis protease-activating factor-1

Bcl-2:

B cell leukemia/lymphoma-2

Caspases:

cysteinyl-directed aspartate-specific proteases

DAPI:

4′,6-diamidino-2-phenylindole·2HCl

Hsf-1:

heat-shock factor 1

Hsps:

heat shock proteins

RBP:

rat brain proteins

RCH:

rapid cold-hardening

SDS-PAGE:

sodium dodecyl sulphate-polyacrylamide gel electrophoresis

TUNEL:

terminal deoxynucleotidyl transferase (TdT)-mediated uridine 5′-triphosphate- biotin (dUTP) nick end labeling

References

  1. Lee RE (1991) Principles of insect low temperature tolerance. In: Lee RE, Denlinger DL (eds) Insects at low temperature. Chapman and Hall, New York, pp 17–46

    Google Scholar 

  2. Denlinger DL, Lee RE (1998) Physiology of cold sensitivity. In: Hallman GJ, Denlinger DL (eds) Temperature sensitivity in insects and application in integrated pest management. Westview Press, Boulder, pp 55–95

    Google Scholar 

  3. Lee RE, Chen C-P, Denlinger DL (1987) A rapid cold-hardening process in insects. Science 238:1415–1417

    Article  Google Scholar 

  4. Czajka M, Lee RE (1990) A rapid cold-hardening protection against cold shock injury in Drosophila melanogaster. J Exp Biol 148:245–254

    PubMed  CAS  Google Scholar 

  5. Shreve SM, Kelty JD, Lee RE (2004) Preservation of reproductive behaviors during modest cooling: rapid cold-hardening fine-tunes organismal response. J Exp Biol 207:1797–1802

    Article  PubMed  Google Scholar 

  6. Drobnis EZ, Crow LM, Berger T, Anchrordoguy TJ, Overstreet JW, Crowe JH (1993) Cold shock damage is due to lipid phase transitions in cell membranes: a demonstration using sperm as a model. J Exp Zool 265:432–437

    Article  PubMed  CAS  Google Scholar 

  7. Yi S-X, Lee RE (2003) Detecting freeze injury and seasonal cold-hardening of cells and tissues in the gall fly larvae, Eurosta solidaginis (Diptera: Tephritidae) using fluorescent vital dyes. J Insect Physiol 49:999–1004

    Article  PubMed  CAS  Google Scholar 

  8. Yi S-X, Lee RE (2004) In vivo and in vitro rapid cold-hardening protects cells from cold-shock injury in the flesh fly. J Comp Physiol B 174:611–615

    Article  PubMed  Google Scholar 

  9. Fuller BJ (2003) Gene expression in response to low temperatures in mammalian cells: a review of current ideas. CryoLetters 24:95–102

    PubMed  CAS  Google Scholar 

  10. Pérez-Garijo A, Martin FA, Morata G (2004) Caspase inhibition during apoptosis causes abnormal signaling and development aberrations in Drosophila. Development 131:5591–5598

    Article  PubMed  CAS  Google Scholar 

  11. White K, Tahaoglu E, Steller H (1996) Cell killing by the Drosophila gene reaper. Science 271:805–807

    Article  PubMed  CAS  Google Scholar 

  12. McCall K, Steller H (1998) Requirement for DCP-1 caspase during Drosophila oogenesis. Science 279:230–234

    Article  PubMed  CAS  Google Scholar 

  13. Bangs P, White K (2000) Regulation and execution of apoptosis during Drosophila development. Dev Dyn 218:68–79

    Article  PubMed  CAS  Google Scholar 

  14. Bergman A, Agapite J, Steller H (1998) Mechanisms and control of programmed cell death in invertebrates. Oncogene 17:3215–3223

    Article  Google Scholar 

  15. Rauen U, Polzar B, Stephan H, Mannherz HG, de Groot H (1999) Cold-induced apoptosis in cultured hepatocytes and liver endothelial cells: mediation by reactive oxygen species. FASEB J 13:155–168

    PubMed  CAS  Google Scholar 

  16. Kerkweg U, Li T, de Groot H, Rauen U (2002) Cold-induced apoptosis of rat liver cells in University of Wisconsin solution: the central role of chelatable iron. Hepatology 35:560–567

    Article  PubMed  CAS  Google Scholar 

  17. Doeppner TR, Grune T, de Groot H, Rauen U (2003) Cold-induced apoptosis of rat liver endothelial cells: involvement of the proteasome. Transplantation 75:1946–1953

    Article  PubMed  Google Scholar 

  18. Soloff BL, Nagle WA, Moss AJ, Henle KJ, Crawford JT (1987) Apoptosis induced by cold shock in vitro is dependent on cell growth phase. Biochem Biophys Res Commun 145:876–883

    Article  PubMed  CAS  Google Scholar 

  19. Kelty JD, Lee RE (1999) Induction of rapid cold-hardening by cooling at ecologically relevant rates in Drosophila melanogaster. J Insect Physiol 45:719–726

    Article  PubMed  CAS  Google Scholar 

  20. Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501

    Article  PubMed  CAS  Google Scholar 

  21. Birren B, Green ED, Klapholz S, Myers RM, Roskams J (eds) (1997) DNA isolation from D. melanogaster. In: Genome analysis: a laboratory manual vol 1: Analyzing DNA. CSHL Press, New York

    Google Scholar 

  22. Murakami K, Kondo T, Yang G, Chen SF, Morita-Fujimura Y, Chan PH (1999) Cold injury in mice: a model to study mechanisms of brain edema and neuronal apoptosis. Progress in Neurobiol 57:289–299

    Article  CAS  Google Scholar 

  23. Wilhelm JE, Mansfield J, Hom-Booher N, Wang S, Turck CW, Hazelrigg T, Vale RD (2000) Isolation of a ribonucleoprotein complex involved in mRNA localization is Drosophila oocytes. J Cell Biol 148:427–439

    Article  PubMed  CAS  Google Scholar 

  24. Manning F, Zuzel K (2003) Comparison of types of cell death: apoptosis and necrosis. J Biol Education 37:141–145

    Google Scholar 

  25. Burton V, Mitchell HK, Young P, Petersen NS (1988) Heat shock protection against cold stress of Drosophila melanogaster. Mol Cell Biol 8:3550–3552

    PubMed  CAS  Google Scholar 

  26. Dahlgaard J, Loeschcke V, Michalak P, Justesen J (1998) Induced thermotolerance and associated expression of the heat-shock protein Hsp70 in adult Drosophila melanogaster. Functional Ecol 12:786–793

    Article  Google Scholar 

  27. Sejerkilde M, Sørensen JG, Loeschcke V (2003) Effects of cold- and heat hardening on thermal resistance in Drosophila melanogaster. J Insect Physiol 49:719–726

    Article  PubMed  CAS  Google Scholar 

  28. Morrow G, Heikkila JJ, Tanguay RM (2006) Differences in the chaperone-like activities of the four main small heat shock proteins of Drosophila melanogaster. Cell Stress Chaperones 11:51–60

    Article  PubMed  CAS  Google Scholar 

  29. Beere HM (2005) Death versus survival: functional interaction between the apoptotic and stress-inducible heat shock protein pathways. J Clinical Investigation 115:2633–2639

    Article  CAS  Google Scholar 

  30. Murakami K, Kondo T, Sato S, Li Y, Chan PH (1997) Occurrence of apoptosis following cold injury-induced brain edema in mice. Neuroscience 81:231–237

    Article  PubMed  CAS  Google Scholar 

  31. Xu R-X, Nakamura T, Nagao S, Miyamoto O, Jin, L, Toyoshima T, Iitano T (1998) Specific inhibition of apoptosis after cold-induced brain injury by moderate postinjury hypothermia. Neurosurgery 43:107–115

    Article  PubMed  CAS  Google Scholar 

  32. Baust JM, Van Buskirk R, Baust JG (2002) Gene activation of the apoptotic caspase cascade following cryogenic storage. Cell Preserv Tech 1:63–80

    Article  CAS  Google Scholar 

  33. Vairetti M, Ferrigno A, Bertone R, Richelmi P, Bertè F, Freitas I (2005) Apoptosis vs. necrosis: glutathione-mediated cell death during rewarming of rat hepatocytes. Biochim Biophys Acta 1740:367–374

    PubMed  CAS  Google Scholar 

  34. Nagle WA, Soloff BL, Moss AJ, Henle KJ (1990) Cultured Chinese hamster cells undergo apoptosis after exposure to cold but nonfreezing temperature. Cryobiol 27:439–451

    Article  CAS  Google Scholar 

  35. Garcia SL, Mello MLS, Garcia NL, Rodrigues VLCC (2000) Changes in nuclear phenotypes following cold shock in Panstrongylus megistus (Burmeister). Mem Inst Oswaldo Cruz Rio de Janeiro 95:893–898

    CAS  Google Scholar 

  36. Campos SGP, Podrigues VLCC, Mello MLS (2002) Changes in nuclear phenotype frequencies following sequential cold shocks in Triatoma infestans (Hemiptera, Reduviidae). Mem Inst Oswaldo Cruz Rio de Janeiro 97:857–864

    Google Scholar 

  37. Lee RE, Damodaran K, Yi S-X, Lorigan GA (2006) Rapid cold-hardening increases membrane fluidity and cold tolerance of insect cells. Cryobiol 52:459–463

    Article  CAS  Google Scholar 

  38. Lee RE, Elnitsky MA, Rinehart JP, Hayward SA, Sandro LH, Denlinger DL (2006) Rapid cold-hardening increases the freezing tolerance of the Antarctic midge Belgica antarctica. J Exp Biol 209:399–406

    Article  PubMed  Google Scholar 

  39. Bettaieb A, Averill-Bates DA (2005) Thermotolerance induced at a mild temperature of 40°C protects cells against heat shock-induced apoptosis. J Cellular Physiol 205:47–57

    Article  CAS  Google Scholar 

  40. Webster KA (2003) Serine phosphorylation and suppression of apoptosis by the small heat shock protein alphaB-crystallin. Circ Res 92:130–132

    Article  PubMed  CAS  Google Scholar 

  41. Kamradt MC, Chen F, Sam S, Cryns VL (2002) The small heat shock protein alpha B-crystallin negatively regulates apoptosis during myogenic differentiation by inhibiting caspase-3 activation. J Biol Chem 277:38731–38736

    Article  PubMed  CAS  Google Scholar 

  42. Suzuki K, Smolenski RT, Jayakumar J, Murtuza B, Brand NJ, Yacoub MH (2000) Heat shock treatment enhances graft cell survival in skeletal myoblast transplantation to the heart. Circulation 102:III216–III221

    PubMed  CAS  Google Scholar 

  43. Schlesinger MJ, Santoro MG, Garaci E (1990) Stress proteins: induction and function. Springer-Verlag, New York

    Google Scholar 

  44. Siu PM, Bryner RW, Martyn JK, Always SE (2004) Apoptotic adaptations from exercise training in skeletal and cardiac muscles. FASEB J 18:1150–1152

    PubMed  CAS  Google Scholar 

  45. Kelty JD, Lee RE (2001) Rapid cold-hardening of Drosophila melanogaster (Diptera: Drosophilidae) during ecologically-based thermoperiodic cycles. J Exp Biol 204:1659–1666

    PubMed  CAS  Google Scholar 

  46. Overgaard J, Sorensen JG, Petersen SO, Loeschcke V, Holmstrup M (2005) Changes in membrane liquid composition following rapid cold hardening in Drosophila melanogaster. J Insect Physiol 51:1173–1182

    Article  PubMed  CAS  Google Scholar 

  47. Yiangou M, Tsapogas P, Nikolaidis N, Scouras ZG (1997) Heat shock gene expression during recovery after transient cold shock in Drosophila auraria (Diptera: Drosophilidae). Cytobios 92:91–98

    PubMed  CAS  Google Scholar 

  48. Liu A, Bian H, Huang E, Lee YK (1994) Transient cold shock induces the heat shock response upon recovery at 37°C in human cells. J Biol Chem 269:14768–14775

    PubMed  CAS  Google Scholar 

  49. Petersen NS, Young P, Burton V (1990) Heat shock mRNA accumulation during recovery from cold shock in Drosophila melanogaster. Insect Bichem 20:679–684

    Article  CAS  Google Scholar 

  50. Qin W, Neal SJ, Robertson RM, Westwood JT, Walker VK (2005) Cold hardening and transcriptional change in Drosophila melanogaster. Insect Mol Biol 14:607–613

    Article  PubMed  CAS  Google Scholar 

  51. Joplin KH, Yocum GD, Denlinger DL (1990) Cold shock elicits expression of heat shock proteins in the flesh fly, Sarcophaga crassipalpis. J Insect Physiol 36:825–834

    Article  CAS  Google Scholar 

  52. Goto SG, Yoshida KM, Kimura MT (1998) Accumulation of Hsp70 mRNA under environmental stresses in diapausing and nondiapausing adults of Drosophila triauraria. J Insect Physiol 44:1009–1015

    Article  PubMed  CAS  Google Scholar 

  53. Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, Yuan J (1996) Human ICE/CED-3 protease nomenclature. Cell 87:171–171

    Article  PubMed  CAS  Google Scholar 

  54. Golstein P (1997) Controlling cell death. Science 275:1081–1082

    Article  PubMed  CAS  Google Scholar 

  55. Cryns V, Yuan J (1998) Proteases to die for. Genes and Develop 12:1551–1570

    CAS  Google Scholar 

  56. Verma YK, Gangenahalli GU, Singh VK, Gupta P, Chandra R, Sharma RK, Raj HG (2006) Cell death regulation by B-cell lymphoma protein. Apoptosis 11:459–471

    Article  PubMed  CAS  Google Scholar 

  57. Tu S, McStay GP, Boucher L-M, Mak T, Beere HM, Green DR (2006) In situ trapping of activated initiator caspases reveals a role for caspase-2 in heat shock-induced apoptosis. Nature Cell Biol 8:72–77

    Article  PubMed  CAS  Google Scholar 

  58. Cheng EJY, Krisch DG, Clem RJ, Ravi R, Kastan MB, Bedi A, Ueno K, Hardwick JM (1997) Conversion of Bcl-2 to a Bax-like death effector by caspasees. Science 278:1966–1968

    Article  PubMed  CAS  Google Scholar 

  59. Clem R, Cheng E, Karp C, Krisch D, Ueno K, Takahashi A, Kastan M, Griffin D, Earnshaw W, Veliuona M, Hardwick J (1998) Modulation of cell death by Bcl-xL through caspase interaction. Proc Natl Acad Sci USA 95:554–559

    Article  PubMed  CAS  Google Scholar 

  60. Ambrosini G, Adida C, Altieri DC (1997) A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nature Med 3:917–921

    Article  PubMed  CAS  Google Scholar 

  61. Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157

    Article  PubMed  CAS  Google Scholar 

  62. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng T-I, Jones DP, Wang X (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129–1132

    Article  PubMed  CAS  Google Scholar 

  63. Morita-Fujimura Y, Fujimura M, Kawase M, Chen SF, Chan PH (1999) Release of mitochondrial cytochrome c and DNA fragmentation after cold injury-induced brain trauma in mice: possible role in neuronal apoptosis. Neuroscience Lett 267:201–205

    Article  CAS  Google Scholar 

  64. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    Article  PubMed  CAS  Google Scholar 

  65. Pan G, O’Rourke K, Dixit VM (1998) Caspase-9, Bcl-xL, and Apaf-1 form a ternary complex. J Biol Chem 273:5841–5845

    Article  PubMed  CAS  Google Scholar 

  66. Budihardjo I, Oliver H, Lutter M, Luo X, Wang X (1999) Biochemical pathway of caspase activation during apoptosis. Annu Rev Cell Dev Biol 15:269–290

    Article  PubMed  CAS  Google Scholar 

  67. de Graauw M, Tijdens I, Cramer R, Corless S, Timms JF, van de Water B (2005) Heat shock protein 27 is the major differentially phosphorylated protein involved in renal epithelial cellular stress response and controls focal adhesion organization and apoptosis. J Biol Chem 280:29885–29898

    Article  PubMed  CAS  Google Scholar 

  68. Antonsson B, Conti F, Ciavatta A, Montessuit S, Lewis S, Martinou I, Bernasconi L, Bernard A, Mermod J-J, Mazzei G, Maundrell K, Gambale F, Sadoul R, Martinou J-C (1997) Inhibition of Bax channel-forming activity by Bcl-2. Science 277:370–372

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by NSF grant #IOB-0416720. We thank Katia Del Rio-Tsonis, Natalia Vergara and Juanita Constible for a critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard E. Lee Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, SX., Moore, C.W. & Lee, R.E. Rapid cold-hardening protects Drosophila melanogaster from cold-induced apoptosis. Apoptosis 12, 1183–1193 (2007). https://doi.org/10.1007/s10495-006-0048-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-0048-2

Keywords

Navigation