Skip to main content
Log in

Differentiating megakaryocytes in myelodysplastic syndromes succumb to mitochondrial derangement without caspase activation

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Myelodysplastic syndromes (MDS) constitute a preneoplastic condition in which potentially malignant cancer stem cells continuously die during differentiation. This MDS-associated cell death often involves caspase-3 activation, yet can also occur without caspase activation, for instance in differentiating megakaryocytes (MK). We investigated, the mechanisms through which MK from MDS patients undergo premature cell death. While polyploid, mature MK from healthy subjects or MDS patients manifested caspase-3 activation during terminal differentiation, freshly isolated, immature MK from MDS died without caspase-3 activation. Similarly, purified bone marrow CD34+ cells from MDS patients that were driven into MK differentiation in vitro died without caspase-3 activation at an immature stage, before polyploidization. The premature death of MDS MK was accompanied by the mitochondrial release of cytochrome c, Smac/DIABLO and endonuclease G, a caspase-independent death effector, as well loss of the mitochondrial membrane potential and plasma membrane phosphatidylserine exposure before definitive loss of viability. Thus, a stereotyped pattern of mitochondrial alterations accompanies differentiation-associated MK death in MDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.

Similar content being viewed by others

Abbreviations

AIF:

apoptosis inducing factor

AML:

acute myeloid leukemia

BMMNC:

bone marrow mononuclear cells

Casp-3a:

activated caspase-3

Cyt c :

cytochrome c

DiOC6(3):

3,3′ dihexyloxacarbocyanine iodide

EndoG:

endonuclease G

Hsp60:

heat shock protein 60

IPSS:

international prognostic scoring system

MDS:

myelodysplastic syndrome

MK:

megakaryocytes

MMP:

mitochondrial membrane permeabilization

PI:

propidium iodide

VWF:

Willebrand factor (Factor VIII)

z-VAD.fmk:

N-benzyloxycarbonyl-Val-Ala-Asp- fluoromethylketone

References

  1. Fenaux P (2004) Myelodysplastic syndromes: from pathogenesis and prognosis to treatment. Semin Hematol 41:6–12

    Article  PubMed  CAS  Google Scholar 

  2. Fenaux P (2005) Inhibitors of DNA methylation: beyond myelodysplastic syndromes. Nat Clin Pract Oncol 2 (Suppl 1):S36–44

    Article  PubMed  CAS  Google Scholar 

  3. Mihara K, Chowdhury M, Nakaju N et al (2006) Bmi-1 is useful as a novel molecular marker for predicting progression of myelodysplastic syndrome and patient prognosis. Blood 107:305–308

    Article  PubMed  CAS  Google Scholar 

  4. Kroemer G, Martin SJ (2005) Caspase-independent cell death. Nat Med 11:725–730

    Article  PubMed  Google Scholar 

  5. Boudard D, Vasselon C, Bertheas MF et al (2002) Expression and prognostic significance of Bcl-2 family proteins in myelodysplastic syndromes. Am J Hematol 70:115–125

    Article  PubMed  Google Scholar 

  6. Tehranchi R, Fadeel B, Forsblom AM et al (2003) Granulocyte colony-stimulating factor inhibits spontaneous cytochrome c release and mitochondria-dependent apoptosis of myelodysplastic syndrome hematopoietic progenitors. Blood 101:1080–1086

    Article  PubMed  CAS  Google Scholar 

  7. Merchant SH, Gonchoroff NJ, Hutchison RE (2001) Apoptotic index by Annexin V flow cytometry: adjunct to morphologic and cytogenetic diagnosis of myelodysplastic syndromes. Cytometry 46:28–32

    Article  PubMed  CAS  Google Scholar 

  8. Sloand EM, Kim S, Fuhrer M et al (2002) Fas-mediated apoptosis is important in regulating cell replication and death in trisomy 8 hematopoietic cells but not in cells with other cytogenetic abnormalities. Blood 100:4427–4432

    Article  PubMed  CAS  Google Scholar 

  9. Claessens YE, Bouscary D, Dupont JM et al (2002) In vitro proliferation and differentiation of erythroid progenitors from patients with myelodysplastic syndromes: evidence for Fas-dependent apoptosis. Blood 99:1594–1601

    Article  PubMed  CAS  Google Scholar 

  10. Claessens YE, Park S, Dubart-Kupperschmitt A et al (2005) Rescue of early-stage myelodysplastic syndrome-deriving erythroid precursors by the ectopic expression of a dominant-negative form of FADD. Blood 105:4035–4042

    Article  PubMed  CAS  Google Scholar 

  11. Stasi R, Amadori S (2002) Infliximab chimaeric anti-tumour necrosis factor alpha monoclonal antibody treatment for patients with myelodysplastic syndromes. Br J Haematol 116:334–337

    PubMed  CAS  Google Scholar 

  12. Kerbauy DM, Lesnikov V, Abbasi N, Seal S, Scott B, Deeg HJ (2005) NF-kappaB and FLIP in arsenic trioxide (ATO)-induced apoptosis in myelodysplastic syndromes (MDSs). Blood 106:3917–3925

    Article  PubMed  CAS  Google Scholar 

  13. Zang DY, Goodwin RG, Loken MR, Bryant E, Deeg HJ (2001) Expression of tumor necrosis factor-related apoptosis-inducing ligand, Apo2L, and its receptors in myelodysplastic syndrome: effects on in vitro hemopoiesis. Blood 98:3058–3065

    Article  PubMed  CAS  Google Scholar 

  14. Briggs RC, Shults KE, Flye LA et al (2006) Dysregulated human myeloid nuclear differentiation antigen expression in myelodysplastic syndromes: evidence for a role in apoptosis. Cancer Res 66:4645–4651

    Article  PubMed  CAS  Google Scholar 

  15. Braun T, Carvalho G, Fabre C, Grosjean J, Fenaux P, Kroemer G (2006) Targeting NF-kappaB in hematologic malignancies. Cell Death Differ 13:748–758

    Article  PubMed  CAS  Google Scholar 

  16. Clarke MC, Savill J, Jones DB, Noble BS, Brown SB (2003) Compartmentalized megakaryocyte death generates functional platelets committed to caspase-independent death. J Cell Biol 160:577–587

    Article  PubMed  CAS  Google Scholar 

  17. De Botton S, Sabri S, Daugas E et al (2002) Platelet formation is the consequence of caspase activation within megakaryocytes. Blood 100:1310–1317

    Article  PubMed  CAS  Google Scholar 

  18. Houwerzijl EJ, Blom NR, Van Der Want JJ et al (2005) Increased peripheral platelet destruction and caspase-3-independent programmed cell death of bone marrow megakaryocytes in myelodysplastic patients. Blood 105:3472–3479

    Article  PubMed  CAS  Google Scholar 

  19. Houwerzijl EJ, Blom NR, Van Der Want JJ et al (2004) Ultrastructural study shows morphologic features of apoptosis and para-apoptosis in megakaryocytes from patients with idiopathic thrombocytopenic purpura. Blood 103:500–506

    Article  PubMed  CAS  Google Scholar 

  20. Vardiman JW, Harris NL, Brunning RD (2002) The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 100:2292–2302

    Article  PubMed  CAS  Google Scholar 

  21. Greenberg P, Cox C, LeBeau MM et al (1997) International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 89:2079–2088

    PubMed  CAS  Google Scholar 

  22. Castedo M, Hirsch T, Susin SA et al (1996) Sequential acquisition of mitochondrial and plasma membrane alterations during early lymphocyte apoptosis. J Immunol 157:512–521

    PubMed  CAS  Google Scholar 

  23. Braun T, Carvalho G, Coquelle A et al (2006) NF-kappaB constitutes a potential therapeutic target in high-risk myelodysplastic syndrome. Blood 107:1156–1165

    Article  PubMed  CAS  Google Scholar 

  24. Obeid MTA, Ghiringhelli F et al (2006) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med. In Press

  25. Brada SJ, van de Loosdrecht AA, Koudstaal J, de Wolf JT, Vellenga E (2004) Limited numbers of apoptotic cells in fresh paraffin embedded bone marrow samples of patients with myelodysplastic syndrome. Leuk Res 28:921–925

    Article  PubMed  CAS  Google Scholar 

  26. Kitanaka C, Kuchino Y (1999) Caspase-independent programmed cell death with necrotic morphology. Cell Death Differ 6:508–515

    Article  PubMed  CAS  Google Scholar 

  27. Holler N, Zaru R, Micheau O et al (2000) Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1:489–495

    Article  PubMed  CAS  Google Scholar 

  28. Jaattela M, Tschopp J (2003) Caspase-independent cell death in T lymphocytes. Nat Immunol 4:416–423

    Article  PubMed  Google Scholar 

  29. Zong WX, Thompson CB (2006) Necrotic death as a cell fate. Genes Dev 20:1–15

    Article  PubMed  CAS  Google Scholar 

  30. Obeid M, Tesniere A, Ghringhelli F et al (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13:54–61

    Google Scholar 

Download references

Acknowledgments

This work was supported by Cancéropôle Ile-de-France, Association pour la recherche sur le cancer, Fondation de France, Association Laurette Fugain, European Community (Active p53, TransDeath) (G.K.) and MDS Foundation (T.B.). T.B., J.G., C.F. and S.B. are supported by fellowships from the Etablissement Français du Sang, the Institut National du Cancer, the Fondation pour la Recherche Médicale and Deutsche Forschungsgemeinschaft, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Kroemer.

Additional information

T. Braun and G. Carvalho contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braun, T., Carvalho, G., Grosjean, J. et al. Differentiating megakaryocytes in myelodysplastic syndromes succumb to mitochondrial derangement without caspase activation. Apoptosis 12, 1101–1108 (2007). https://doi.org/10.1007/s10495-006-0030-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-0030-z

Keywords

Navigation