Skip to main content
Log in

Partitioning apoptosis: A novel form of the execution phase of apoptosis

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Apoptosis is characterized by chromatin condensation, DNA cleavage, redistribution of phosphatidylserine, and apoptotic body formation via an actin-dependent process. We describe a novel form of the execution phase of apoptosis in human multiple myeloma cells that is morphologically and mechanistically distinct from classical apoptosis, but is caspase-dependent and inhibited by IL-6 and overexpression of Bcl-2. Electron microscopic analysis of these cells demonstrated chromatin condensation without nuclear fragmentation, and ‘partitioning’ of cell constituents into two components: a single, large bleb containing soluble protein and free ribosomes, and a region containing the nucleus, organelles, and RER. In some cases, the bleb separated, becoming a free vesicle exhibiting random kinetic motion. These morphologic features occurred despite inhibition of the actin and tubulin cytoskeletal systems. This novel form of apoptosis, called partitioning apoptosis, was observed in a variety of tumor cell types and in primary cells. The execution phase of apoptosis can occur in a manner that is morphologically and mechanistically distinct from classical apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnstone RW, Ruefli AA, Lowe SW. Apoptosis: A link between cancer genetics and chemotherapy. Cell 2002; 108: 153–164.

    CAS  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  3. Arends MJ, Wyllie AH. Apoptosis: Mechanisms and roles in pathology. Int Rev Exp Pathol 1991; 32: 223–254.

    PubMed  CAS  Google Scholar 

  4. Wyllie AH, Kerr JF, Currie AR. Cell death: The significance of apoptosis. Int Rev Cytol 1980; 68: 251–306.

    Article  CAS  PubMed  Google Scholar 

  5. Fadok VA, Bratton DL, Rose DM, Pearson A, Ezekewitz RA, Henson PM. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 2000; 405: 85–90.

    PubMed  CAS  Google Scholar 

  6. Liu X, Zou H, Slaughter C, Wang X. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 1997; 89: 175–184.

    Article  CAS  PubMed  Google Scholar 

  7. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 1998; 391: 43–50.

    Article  CAS  PubMed  Google Scholar 

  8. Rao L, Perez D, White E. Lamin proteolysis facilitates nuclear events during apoptosis. J Cell Biol 1996; 135: 1441–1455.

    PubMed  CAS  Google Scholar 

  9. Lee N, MacDonald H, Reinhard C, et al. Activation of hPAK65 by caspase cleavage induces some of the morphological and biochemical changes of apoptosis. Proc Natl Acad Sci USA 1997; 94: 13642–13647.

    PubMed  CAS  Google Scholar 

  10. Rudel T, Bokoch GM. Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science 1997; 276: 1571–1574.

    PubMed  CAS  Google Scholar 

  11. Kothakota S, Azuma T, Reinhard C, et al. Caspase-3-generated fragment of gelsolin: Effector of morphological change in apoptosis. Science 1997; 278: 294–298.

    PubMed  CAS  Google Scholar 

  12. Zheng TS, Schlosser SF, Dao T, et al. Caspase-3 controls both cytoplasmic and nuclear events associated with Fas-mediated apoptosis in vivo. Proc Natl Acad Sci USA 1998; 95: 13618–13623.

    PubMed  CAS  Google Scholar 

  13. Janicke RU, Sprengart ML, Wati MR, Porter AG. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 1998; 273: 9357– 9360.

    Article  CAS  PubMed  Google Scholar 

  14. Martin SJ, O’Brien GA, Nishioka WK, et al. Proteolysis of fodrin (non-erythroid spectrin) during apoptosis. J Biol Chem 1995; 270: 6425–6428.

    PubMed  CAS  Google Scholar 

  15. Cotter TG, Lennon SV, Glynn JM, Green DR. Microfilament-disrupting agents prevent the formation of apoptotic bodies in tumor cells undergoing apoptosis [published erratum appears in Cancer Res 1992;52(12): 3512]. Cancer Res 1992; 52: 997–1005

    Google Scholar 

  16. Laster SM, Mackenzie JM, Jr. Bleb formation and F-actin distribution during mitosis and tumor necrosis factor-induced apoptosis. Microsc Res Tech 1996; 34: 272–280.

    PubMed  CAS  Google Scholar 

  17. Mills JC, Stone NL, Erhardt J, Pittman RN. Apoptotic membrane blebbing is regulated by myosin light chain phosphorylation. J Cell Biol 1998; 140: 627–636.

    Article  CAS  PubMed  Google Scholar 

  18. Coleman ML, Sahai EA, Yeo M, Bosch M, Dewar A, Olson MF. Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol 2001; 3: 339–345.

    Article  PubMed  CAS  Google Scholar 

  19. Sebbagh M, Renvoize C, Hamelin J, Riche N, Bertoglio J, Breard J. Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat Cell Biol 2001; 3: 346–352.

    PubMed  CAS  Google Scholar 

  20. Zhang B, Gojo I, Fenton RG. Myeloid cell factor-1 is a critical survival factor for multiple myeloma. Blood 2002; 99: 1885–1893.

    PubMed  CAS  Google Scholar 

  21. Jelinek DF. Mechanisms of myeloma cell growth control. Hematol Oncol Clin North Am 1999; 13: 1145–1157.

    PubMed  CAS  Google Scholar 

  22. Klein B, Zhang XG, Jourdan M, et al. Paracrine rather than autocrine regulation of myeloma-cell growth and differentiation by interleukin-6. Blood 1989; 73: 517–526.

    PubMed  CAS  Google Scholar 

  23. Gojo I, Zhang B, Fenton RG. The Cyclin-dependent Kinase Inhibitor Flavopiridol Induces Apoptosis in Multiple Myeloma Cells through Transcriptional Repression and Down-Regulation of Mcl-1. Clin Cancer Res 2002; 8: 3527–3538.

    PubMed  CAS  Google Scholar 

  24. Vanags DM, Porn-Ares MI, Coppola S, Burgess DH, Orrenius S. Protease involvement in fodrin cleavage and phosphatidylserine exposure in apoptosis. J Biol Chem 1996; 271: 31075–31085.

    PubMed  CAS  Google Scholar 

  25. Mills JC, Stone NL, Pittman RN. Extranuclear apoptosis. The role of the cytoplasm in the execution phase. J Cell Biol 1999; 146: 703–708.

    PubMed  CAS  Google Scholar 

  26. Shimizu T, Cao CX, Shao RG, Pommier Y. Lamin B phosphorylation by protein kinase calpha and proteolysis during apoptosis in human leukemia HL60 cells. J Biol Chem 1998; 273: 8669–8674.

    PubMed  CAS  Google Scholar 

  27. Henson PM, Bratton DL, Fadok VA. The phosphatidylserine receptor: A crucial molecular switch? Nat Rev Mol Cell Biol 2001; 2: 627–633.

    PubMed  CAS  Google Scholar 

  28. Watters D, Waterhouse N. Proteolytic targets in cell death. Results Probl Cell Differ 1998; 24: 25–44.

    PubMed  CAS  Google Scholar 

  29. Robertson JD, Orrenius S, Zhivotovsky B. Review: Nuclear events in apoptosis. J Struct Biol 2000; 129: 346–358.

    PubMed  CAS  Google Scholar 

  30. Martelli AM, Zweyer M, Ochs RL, et al. Nuclear apoptotic changes: An overview. J Cell Biochem 2001; 82: 634– 646.

    PubMed  CAS  Google Scholar 

  31. Stolzenberg I, Wulf S, Mannherz HG, Paddenberg R. Different sublines of Jurkat cells respond with varying susceptibility of internucleosomal DNA degradation to different mediators of apoptosis. Cell Tissue Res 2000; 301: 273–282.

    PubMed  CAS  Google Scholar 

  32. Faleiro L, Lazebnik Y. Caspases disrupt the nuclear-cytoplasmic barrier. J Cell Biol 2000; 151: 951–959.

    Article  CAS  PubMed  Google Scholar 

  33. Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 1995; 146: 3–15.

    CAS  PubMed  Google Scholar 

  34. Hirsch T, Marchetti P, Susin SA, et al. The apoptosis-necrosis paradox. Apoptogenic proteases activated after mitochondrial permeability transition determine the mode of cell death. Oncogene 1997; 15: 1573–1581.

    Article  CAS  PubMed  Google Scholar 

  35. Leist M, Jaattela M. Four deaths and a funeral: From caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2001; 2: 589–598.

    Article  CAS  PubMed  Google Scholar 

  36. Green DR, Reed JC. Mitochondria and apoptosis. Science 1998; 281:1309–1312.

    Article  CAS  PubMed  Google Scholar 

  37. Leist M, Nicotera P. The shape of cell death. Biochem Biophys Res Commun 1997; 236: 1–9.

    PubMed  CAS  Google Scholar 

  38. McCarthy NJ, Whyte MK, Gilbert CS, Evan GI. Inhibition of Ced-3/ICE-related proteases does not prevent cell death induced by oncogenes, DNA damage, or the Bcl-2 homologue Bak. J Cell Biol 1997; 136: 215–227.

    PubMed  CAS  Google Scholar 

  39. Hoffmann PR, deCathelineau AM, Ogden CA, et al. Phosphatidylserine (PS) induces PS receptor-mediated macropinocytosis and promotes clearance of apoptotic cells. J Cell Biol 2001; 155: 649–659.

    PubMed  CAS  Google Scholar 

  40. Somersan S, Bhardwaj N. Tethering and tickling: A new role for the phosphatidylserine receptor. J Cell Biol 2001; 155: 501–504.

    PubMed  CAS  Google Scholar 

  41. Sauter B, Albert ML, Francisco L, Larsson M, Somersan S, Bhardwaj N. Consequences of cell death: Exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J Exp Med 2000; 191: 423–434.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. G. Fenton MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, B., Arany, Z., Mann, D. et al. Partitioning apoptosis: A novel form of the execution phase of apoptosis. Apoptosis 10, 219–231 (2005). https://doi.org/10.1007/s10495-005-6077-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-005-6077-4

Keywords:

Navigation